|
|
(37 dazwischenliegende Versionen des gleichen Benutzers werden nicht angezeigt) |
Zeile 1: |
Zeile 1: |
| + | ([[Inhalt_Kursstufe|'''Kursstufe''']] > [[Inhalt_Kursstufe#Spezielle Relativitätstheorie|'''Spezielle Relativitätstheorie''']]) |
| + | |
| + | ([[Inhalt_Klasse_10|'''Klassische Mechanik''']] > [[Inhalt_Klasse_10#Bezugssysteme|'''Bezugssysteme''']]) |
| + | |
| + | |
| ==Beispiele== | | ==Beispiele== |
− | ===Bezugssysteme mit konstanter Geschwindigkeit=== | + | <gallery widths=150px heights=130px perrow=4 > |
− | *[http://www.youtube.com/watch?v=Y75kEf8xLxI youtube: frames of reference part 1 ] (The Physical Science Study Comittee)
| + | Bild:leer.jpg|"Die Butter ist rechts." "Nein, links!" |
− | **[http://www.youtube.com/watch?v=dAoGpflOmdw&feature=related part 2] (Bis 4:33)
| + | Bild:Astronauten_in_der_ISS.jpg|"Da Unten ist es!" |
− | *[http://www.youtube.com/watch?v=fzV6J1iMwGI bessere Qualität]
| + | Bild:Entfernungs-Schild_Hochheim.jpg|Frankfurt ist 33km entfernt. |
− | * [http://www.physics.ucla.edu/demoweb/ntnujava/relativeVelocity/relativeVelocity.html Relative Sichtweisen der gleichen Bewegungen auf einem Fluss.]
| + | Bild:Schauinsland_Turm.jpg|"Ich bin 22 Meter hoch!" |
| + | Bild:Schlafender Mann im Zug.jpg|Dieser Fahrgast ist definitiv in Ruhe. |
| + | Bild:Geschwindigkeit_Signal_Bahn.jpg|Ab hier darf man nur noch mit 60 km/h fahren! |
| + | Bild:Personenaufzug.jpg|"Beim Anfahren des Aufzugs werde ich nach unten auf den Boden gedrückt." |
| + | Bild:Spielplatzkarussell.jpg|"Auf dem Karussel werde ich nach Außen geschleudert." |
| + | Bild:Straßenbahn fahren.jpg|Wo lande ich, wenn im fahrenden Zug hochspringe? <br>(Videos:[http://www.youtube.com/watch?v=XwkEPjJosbk Wenn man im Zug hochspringt...] und [[Media:Trägheit im Zug springen frames of reference Ausschnitt.ogg|Experiment zum Fallen im fahrenden Zug.]]) |
| + | Bild:Frames_of_Reference_Filmstill.jpg|[http://www.youtube.com/watch?v=fzV6J1iMwGI Video: "Frames of reference" Teil 1 konstante Geschwindigkeiten] |
| + | Bild:Applet_frame_of_reference.jpg| [http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=140.0 Applet: Relative Sichtweisen der gleichen Bewegungen auf einem Fluss.] |
| + | Bild:Frames_of_Reference_2_Filmstill.jpg|[http://www.youtube.com/watch?v=vzH0ioys-qk Video: "Frames of reference" Teil 2 beschleunigte Systeme (linear und drehend)] |
| + | |
| + | </gallery> |
| | | |
− | ===Beschleunigte Bezugssysteme===
| + | Ein und dieselbe Situation kann für verschiedene Personen aus ihrem Blickwinkel ganz unterschiedlich beschrieben werden. |
− | *[http://www.youtube.com/watch?v=dAoGpflOmdw&feature=related youtube: frames of reference part 2] (The Physical Science Study Comittee) (ab 4:33)
| + | |
− | *[http://www.youtube.com/watch?v=vzH0ioys-qk bessere Qualität] (linear und drehend beschleunigte Systeme)
| + | |
− | ====Drehende Bezugssysteme====
| + | |
− | *[http://www.youtube.com/watch?v=3ug23VTMies&feature=related youtube: frames of reference part 3] (The Physical Science Study Comittee)
| + | |
− | **[http://www.youtube.com/watch?v=GzvGfOgf7Y4&NR=1 part 4]
| + | |
| | | |
| + | *Eine Beschreibung der Orientierung (Rechts, Links) ist relativ zu der vorgegeben Richtung, aus der ich auf die Situation schaue. |
| + | *Beschreibt man die Lage (Oben, Unten) bezieht man sich auf die eigene Höhe. Bei einer Höhenangabe muss man deshalb wissen zu welchem Bezugspunkt gemessen wurde, oft ist es die Höhe über dem Meeresspiegel. Wo auf der Erde Oben und wo Unten ist, muss man aber nicht erklären, denn ein Stein fällt immer nach Unten. |
| + | *Auch eine Ortsangabe macht nur relativ zu einem Bezugspunkt und einer vorgegebenen Richtung Sinn. ("50 km nördlich von Freiburg.") |
| + | *Ebenso ist die Angabe der Geschwindigkeit nur sinnvoll in Bezug auf eine bestimmte Umgebung. In der Regel ist dies die Erde, fährt man aber in einem Zug kann man sie auch relativ zum Zug angeben. |
| + | |
| + | Die mathematische Beschreibung eines Bezugssystems besteht deshalb aus einem Ausgangspunkt und vorgegebenen Richtungen im Raum. Meistens ist dies ein kartesisches Koordinatensystem mit drei zueinander rechtwinkligen Achsen. Bei runden Objekten wie der Erde, bieten sich auch runde Koordinatenachsen an. Im Falle der Positionsangabe auf der Erde mit Längen- und Breitengraden. |
| + | |
| + | Wenn also eine Situation so verschieden beschrieben werden kann, dann stellen sich weitere Fragen: |
| + | *Ist die Beschreibung in einem Bezugssystem "richtiger" als die Beschreibung in einem anderen? |
| + | *Welche Eigenschaften werden unterschiedlich beschrieben und welche Eigenschaften sind immer gleich? |
| + | *Wie kann man die Beschreibung von einem in ein anderes Bezugssystem umrechnen? |
| | | |
| ==Bezugssysteme mit konstanter Relativgeschwindigkeit== | | ==Bezugssysteme mit konstanter Relativgeschwindigkeit== |
− | In zwei Bezugssystemen, die sich zueinander mit einer konstanten Geschwindigkeit (in Größe und Richtung) bewegen,
| + | [[Datei:Trägheit im Zug springen frames of reference Ausschnitt Standbild.jpg|thumb|[[Media: Trägheit im Zug springen frames of reference Ausschnitt.ogg|Experiment zum Fallen im fahrenden Zug.]]]] |
− | treten die gleichen Kräfte auf. Je nach Bezugssystem unterscheiden sich nur die Beschreibung der Orte und Geschwindigkeiten.
| + | |
| | | |
− | Als Beispiel kann man sich einen durch einen Bahnhof rollenden Zug vorstellen oder einen Aufzug, der mit gleichbleibender Geschwindigkeit fährt.
| + | Fährt man in einem Zug mit konstanter Geschwindigkeit, so laufen alle Vorgänge wie im Stillstand ab. Man kann einen Ball werfen und fangen oder auf den Tisch legen und im Zug herumlaufen. Auch eine hohe Geschwindigkeit beeinflusst diese Bewegungen nicht, wir spüren lediglich die Erschütterungen des Wagens durch Unebenheiten der Schiene oder der Räder. Die Erschütterungen werden aber von Veränderungen der Geschwindigkeit hervorgerufen, bei einer ideal glatten Schiene könnten wir keine Veränderung zum Stillstand wahrnehmen. |
| | | |
− | ==Linear beschleunigte Bezugssysteme==
| + | Auch bei einer Fahrt mit dem Aufzug macht man diese Beobachtung. Nach kurzer Zeit hat der Aufzug auf eine konstante Geschwindigkeit beschleunigt. Nun fühlt sich das eigene Körpergewicht wieder "normal" an, ebenso laufen alle anderen Vorgänge exakt wie im Stillstand ab. |
− | Beschreibt man einen Vorgang in zwei zueinander beschleunigten Systemen, so unterscheidet sich
| + | |
− | die Beschreibung der wirkenden Kräfte!
| + | |
| | | |
− | Im beschleunigten System, bei dem die Geschwindigkeit sich in Größe oder Richtung verändern kann, wirkt eine "Trägheitskraft" entgegen der Beschleunigungsrichtung. Im anderen Bezugssystem gibt es diese Trägheitskraft nicht, hier kann man eine beschleunigende Kraft feststellen. Aus Sicht des nichtbeschleunigten Systems wirken Kräfte, welche die Beschleunigung verursachen: Das Auto schiebt uns nach vorne, der Gurt bremst uns
| + | Durch die Rotation der Erde und der Bewegung der Erde um die Sonne bewegen wir uns, auch wenn wir einfach nur Sitzen, im Bezugssystem der Sonne mit einer sehr großen Geschwindigkeit. Weil sich die Geschwindigkeit aber nur langsam verändert<ref>Es ändert sich nämlich ständig die Richtung der Geschwindigkeit.</ref>, spüren wir davon nichts. |
| + | |
| + | {|class="wikitable" style="border-style: solid; border-width: 4px " |
| + | | |
| + | In zwei Bezugssystemen, die sich zueinander mit einer konstanten Geschwindigkeit (in Betrag und Richtung) bewegen, treten die gleichen Kräfte auf. |
| | | |
− | Beispiele sind ein anfahrender oder bremsender Zug oder Aufzug. Aus Sicht des beschleunigten Systems werden wir beim anfahrenden Auto von der Trägheitskraft in den Sitz gedrückt, beim bremsenden Fahrrad drückt uns die Trägheitskraft auf den Lenker.
| + | Je nach Bezugssystem unterscheiden sich nur die Beschreibung der Orte und Geschwindigkeiten. |
| + | |} |
| | | |
− | Bei dieser Animation sind die Angriffspunkte der Kraftpfeile die Pfeilspitzen und nicht, wie sonst üblich, die stumpfe Seite:
| + | ==Zueinander linear beschleunigte Bezugssysteme== |
| + | Beim Losfahren im Bahnhof beschleunigt der Zug und wir spüren wie wir nach hinten in den Sitz gedrückt werden. Der Sitz fängt uns aber auf und drückt uns nach vorne, sodass wir auf unserem Platz bleiben. Dabei wird sich der Sitz leicht verformen. Aus unserer Sicht hat sich unser Impuls beim Losfahren nicht verändert, er beträgt nach wie vor Null.<ref>Generell habe ich immer keinen Impuls, wenn ich mich selbst als Bezugssystem setze, weil ich mich ja relativ zu mir nicht bewege.</ref> |
| + | <br/>Vom Bahnsteig aus betrachtet, sieht man, wie der Sitz uns nach vorne schiebt, weswegen unser Impuls auch zunimmt. Man kann auch beobachten, wie der Sitz verformt wird, eine Kraft, die uns in den Sitz drückt, können wir dagegen nicht beobachten. |
| | | |
| + | Bremst der Zug vor dem nächsten Halt ab, so spüren wir, wie wir nach vorne gedrückt werden. Sind wir mit dem Sitz gut verbunden oder halten uns am Sitz des Vordermanns fest, so wird der Sitz uns nach hinten drücken und uns so wieder am Platz halten. Dabei hat sich unser Impuls wieder nicht verändert, wir und der Sitz wurden nur einmal kurz zusammengedrückt. |
| + | <br/>Vom Bahnsteig aus nimmt man wahr, wie unser Impuls sinkt, durch die Kraft, mit dem der Sitz entgegen der Fahrtrichtung auf uns drückt. Auch die Verformung des Sitzes sieht man. Die Kraft, mit der wir vom Sitz gezogen werden, kann man nicht beobachten. |
| | | |
− | <ggb_applet width="683" height="309" version="4.0" ggbBase64="UEsDBBQACAAIADuAVUAAAAAAAAAAAAAAAAA9AAAAYmMxZTFjODA3NjhiN2M4YjliZDAzNDhkZGNkNmQ2ZmFcWnVnIEZhaHJlbiBiZXNjaGxldW5pZ2VuLnBuZ9S651dT3fY2HCC0RLoQpXcEBPS2QIIBQg8oTXq1I9IUgvQWQZp0EZUWOlJFkBKqShMEQlFqADGY0EGCdHl2vM85v/H+Ce8YfHK4155rrWteZWbHmBjpsUH4ISAQiA2tr20GAjFQQCC6JBYm4F+Q1wxugkBhILQ2ytxvciWL2e/kWMtv2DMozmDdQVRMg96ck2VUKgDWojziFtDdMvVIUMboVvdi45udGZL0jnSjcmf8TNP5onGmEy/n+VWrj6TIGccT3gX5QxdjHFa/DByoDa6frr42nKDiHXKgLsWpwQlG/f/oLyl6IXrOgYEUHPKF9cPdD4FM9j50Y+AxoYfXun3mXgpc0gieOR2ePjJL/+8DHTJ72Tfa6Np4dmV/+badaSj/wRC5w2h1tsHtSSq5tN7BrHX9ILbcnpCr5hTCiYP17JxNGkxLvLTfsrD8mVwyexDbv6za6epVGZooRvyevCWAP2bumGXbjWLfbjV227VG/bkWJZcFfgJOhIQUbHp/OGYNUdpt7fLGnqXDirIAf9wLXiGWGwkaBmP+C8txiAKQI+S85a1l0vn3ybfLxg7bwzKSqfLv5xgYzg8Z4od2LvPoy8NfJL7fb9lOYYcze6RtTerje2dP7JqLOh14f4BBnCCkQYzNofvQ+mZ5lxK4jU/cSCS2tXwTFt/2wG3ET+d2cVcZBHN8/OCwqYuDUZ0v6PrNQlH+LaEPToyqjIEXH7uu8DrZVRv7TktkO3eEEJPHFXdjQH9PSnLFK+TDXS9hyAO5URFrEwF0VUVm6A2JRd3BC/zcbjKLll4eMou59Fh2FMf7zDHLYU/LgZjj4umiVqZrnrkuwhe1j2t3z1Gbhytt399+x6amlH1sifNqOBaASOYwdzLTtXGZHdtt5ravd2yOzaulzUJCqgQXeuRsJo7zE9RjONj/nE04lvc4SN01CfdDb5TuntMUduIT0eWsYq1jfczCNePycFosIqjYqLlQe72M8UAI17tPt7mNSs3n1U1ME7l8eDWMdt7Rg2AhLw+FUU4MC2KjGBdlMHAsm+Q0shwknX1cdD901mzSMlj10SUTOEJnttKec9Df8KHRRlFYxNHbLlOxmTaej0eqDH/sNtTpZedDTVpfzCtEfT9Gd+fwFjxfZrRPAPtd29l2De8tpbILqfqscHcTw0t5t4LDN9CNr26IcHabvG3j05N4rEnlooEPOKkonBaBDtxSijse0SCoj7DuT9FPVC4Vx5WEpu+/Fyd5k1z1TdUrale7waXRy4X2vwKFQk0eii9ww6n2vY2OHRZ3Cu1794yYV7hLsI5Tsf7ujEc4wyHDK4/0b2zf/Cj26Er5lRkI/NZ3q3/BLkqhbRss9J8XK0QcmLCprIRpSdcLnfc/NH00e37zfezh1BVFlVxV25vb1nsHJRLanP+fUmnPJkZnjj3/pPyBi4cqHvJFu1fr86PUH6xR856SuzRE0//9r2L/fddaAMo3NTPKYC1mzCfzbcN6wVpJW2ISVHn4eO967xBL49OIQ/Ugoz3bGZljYzHg+b+PIVewCcEEscUQTmqb6knqzt/KA7J+4RllXMOee7X42T2y3Tneyfxo8yTfXtBM+OvjOXcoabkv8hTtZGFoBLjlsV3FTRHqxuqTNQt0WxHDr1VFdGIHn+tjbIh1bZtn3G8rJYoV5rh75vpkL/Tfd8otHGZqzQxv1mnNnA+bTN2SDtbYu7J3fALYfwyuIGfnVYFd8PFkb2NQDjULtndgi7Q6rrH53Ci3uL/uwANPB2jBR5y8z8GS2VO/P9ObwIVViVnJ7D1mMJJsKfISlkOnmykeH1X7rTlrnuCAmuayH50eQqtX1VZbYdzD3ZQHBDDZFvB0rCKMvF91hgfTVPHtYwtHgEqd9RPgOF3FKbkvtqDs0Ityv/Z+HYNpzDHfY5TyfHsL4pFCNYlufpXpNOwjzgnedLqTsVE9d0/KYcZIxCP4TJLmIUzso2TrsaL2Pjx+HSy3w5YuFDxxPlRvMSnHdHKlBj/wh07M5JiLZS1cWOEA5zkm5MuCmpUFO6T5yP9eTAg8WT1WM0vyE73RXHGadp+6KI7CzKltuoXbpFnYvySGbZBuxMIhAmAOSDZnEk49f7O5a4xx9mSz6G7CXBT/7NfdmC4OsPrJQ+sN6AfPjiiQJKWNz+yP6wdPzKHlRuDCGR3H3n0Rn0N0z0EOb3L6vOLdI6kPZeG9vXjHue20bSGE7Gxlc3aQiHhyDguJmfmA7Q4RzTuzOMRmV44iHElQlCXI9zq5fC6K/acc0ejlrQvhWbsiGNGj0gIRltQCLcKRDOV9sncN17Ml7/MBXP8Vi5K0oMaXM3SMTaUH3/kNDsXESFH52sNilPcw6uRVpYt2J3/H/nIUZ/nvutJ7aRpZI56WN9X5S+zLN0rYJWysEi1fIn9HfODCCvujqmIynSLfSvz3/2vrkQJY3y2FTufuZqD3Y8JUf6MSpVFVq49LrU7a6P1PsoJEd7zAYalyB2jiUMkSsPlrOt+MX4nedUjD5P+wQ9gk3kO13WsPnD/S/D+VQyROvzYxaLY1VZfRnjYY75c8ao5jdEj7tSxtDzUXigkT/V/NlYn2V0yE/gltZUpxTMeuaQ94nimpz/nwRvd/i+VJeR2o2bjXp1AfQvA8cGX6vIT/Pa4dTOILNptU+lqNE2DdO5Cebl/8vyoOX0hgfRUkkYLYSshelHRm9+L/6fCh4kqEIPu6+XAWbc30IJApbcPlw7aE60myp8pVuU9Lk5YS5GSxlhAWrwsut//qoUr8NH7NIBpMvNqr/k+YR1v09TDR6Nnh9rCf2Ep62RR/fjh/pObFGBTWXqgTn79vjaQGMFyCXGS6T3K9A30HfoVgsmOpShZc1pk8YYFfPGA3Tdg/iBFfcEVXskYy1d99KejtutGEOmyR6HuDdRPyx+fzPk7sr/Fzy36ybpqaI2W3l7VBB8KK6lP11gRCpSKwlQZ73UyE1fSNbxIs88pwT2mKJEWpoOpq9IL+B3A813zdLYGnAtOWBfkmJnLgFnOWgFZxHi1wAJdibdJNCbjwSpL4goq27+hs1THygWZlf/VbpraMrF3npZDu10EmuW3GIfdvSWG8asMFg+e2KXqmd+CixjId996dlT3f0P8shX/a8dZDJ7SC0yzFd3j2hZLa/T4uquV9eZojy9Mbn21iRSmnbhmf2LUOOgdc+DwUXmzkzRHvqNmr53qV6wvhpVzCAnZTsz3r3JeIXKzZh3MLy9zhjitQz5S8cx8eoG+eOscTsq0VSStFXP3sUJxN9Qd3G/ztBrmuCcT5F9wKemwvP29zEoeeiUmfIhanT3PzoBWHkNLTJ6Cby6eP2H8tBy0w1AsSqzVk1jgfA5ik9LzR2EYOAVx1z+uPMoMalwiEhqBC3HVyQxyuinInkecq1y01q549QZ1hGSha5LsWytlHQ6UDaS6ie1K13cBAy+b8QA3XPYlcSxErt63MWwslt3ycYqCnLaNmy8y5qP8QhyiXLea30x73BK4OaxIcCIN0DD7dIfNadnmFgEvpUPSUsy+LxGV83iuWtv9klyCqXyupm/9mmM6QN2uXCyCUvSvxNvxxEQWDppIOvBhV9M473AXYHC9KxNYQ3fKKrML1c/LKwOf1+0xgpP6rBPq4KQi9hfzKg0KHWNWfDRnFb8K+nUDznGAxz3ogujAVG/Rk6guJuPRYojFqTiI61LuIj9ZfYovApq+tmSAwo+FLSoh7t+k/9MLRu1fjVSMLlLh3UQQllpdx4bgxo0otQPt/YxVP35RYKkTcTAfWdUgaGERz1o7p81F5xI2WtUmxO4YJ4NyprQj9vmSZPT6SbOKgMpzd3HEwZjSD6KnthEpYu6+NDyvCU1nBY0SKVBL0bi8HNAX8JrxXx2SBWX0TkP6P6QLvOanGrgCyo50XMhFiXo5roKE9Be6PSCOuTVVGMwJM9w1OvajaLnrPIr1vr1//r3BbotJLPv2wMLWCJZpbJe6klnQzYrX+3I0MersWrGQ+o9RoXTCxz2KJdVwxmd9i6LpuxDQpuHW1QK07QoxvZ3Es79SpkulOTUhzUBuJGmPOKLvhENHuO0yRVttNcrUmjCl0BFYJx2ijtMItSLdJ3qPES69Z+Fnv8ENJzEu/PkUM8K+CVxmFfCQXE4QY0uLaH/P1LLrL9lZn+HmmuFEKVbm9DCKHfiwMyqvbax5meIfPqZG/c2LMR7jAm3fmeVHrighvLZ3iVwUZPzOVOPVRTnydWCOvEIPoPbbEHn93HZqR2YnFLes4QPByS14svkoi0YiYa+/Ei361CEslSKRtndWTIMVWLdsSVs9AxqtkvoOP6l6UrhjeTFc1psL0XYwtOpA6h2zbJuD3TZw2sm1ZkS99T5hXxovebSlUUb+nZ7E0JTtcFQLSwHDW8nUnzC8nzK/bKY2V3vDloRQ2FIdf6RsCe5EiD5PyEr2uvkclmFDKghSSRSKow+ggpYU9r5NaypGVkF/IrpKnlAF/saVcPkw0AiuaDbEYXBAmj9L1cGZVJ+flyzAeGYlR+vLsCeiBQYiHnznBBgRsrao1BZ+Fi/Jm3DOB4Ln2+D4q3kW+jnDo9X+dtPUBgRLhLZlmul5Xf3fekwvrcZbiAtn/vmF2p/Cswek1vpJy7fqvQlOs/pdV6yz+EG2SvbYZwgbm8dM6uWV+Rx7ze7+cl91Ep3+R113CHd8eUCjFQVkemk7MPW8gpR1lIgkFywm/yMsPNgJL8gXxrwnX4a+DrXNDToVxgKZllkRmCnCh9wCyjy5LxbEEcAy9yTUiWotN1SIOrop9l6RsRWYOwrBqhtN63MZa3/WmWFIzdlDHkV1qYmTyFUUK91ErxZKm+p+UKEb1ttDt0t8TdMvBhBrPX9tZHtV8BiiRNZNxC9PEp70B3RoLcisT4b2L+hI+WDUurGMxtrL4OhvFDQVjQK2XRt/1ZZg+S7F0ZdIn+VNOlwgOiYY+vUh0t2xzev1h/U1xxq/3f7TCK3sPZqTD3rOKJ8eF35BqKcL+ecUA0K/96dcH3zQbKT2REZCITENUeora9ejGO685qTGaBMNrCHTKLWLyqTuauRTzz5G4Xwxfd+oHRlGzF7SaPZ6yNfZ6U3ZfdwnHH4XP9eZ1+NBtqZzG7+gcEV0Nru2gfN91vh4DExctXe+txyWrCKwuCi8Ff78rc3Fq7lTs2ODlvaMCUQH34p93LHxVUSIeYit74aXyH8vk2+u3bmQQO3QJepqA+zaVpHBvOw/NFsF85amzehXjGcFnROW3P4f3wvf2d8wrxm8nf9ggmYlao33FKQFcx1GMNKtgiBWnBPPC070JhZnX9TzLP1I0vsaaRxmPp38pOyFwCZvqZN/DBCNVP3d8k8lXYeulKdXrW+XQv9cVN+g9YN9qsnkhwm44bV2CrNJrpFu09gQiz2R3xRJQOUlMylnikD5Fs5ED75iXteK6dkcE03T0teZszwXOezOvtn4di/EWepdavhldbRl1H8lciXG8jrLSafmiSWiRXvQaentHjB2e1//iengXq1gO6G/GEGLFT+xcd3KKDXh3/4LZ1dbi5PK+79tL9IHWp9Z/eklxlheo8lJDVeYkmisAiyrF1tmZW9Hg17PUiHCz0nm8whRndO0dxdrP9qzB07RHsjJeW0/forSYrFgC3KWCqbvVbr+eubjNj35228+0yVwos/LKDv5u95U0rYn5KL7IlVL3DfJASjmT98dZ5l9XOn7ej1p5vjmrYCvZxP5HmBQ0OBN7cXnnipWV65hIVjQe4eZYd9tr/9nzuoscaHx5th3rvgoDygoWm5qf/qzOtmaSmfiZz5UWci5C8NohJcXHNvvMpVaz23pHb/ezEf5WgzI/O1X7AtkBa9Sjrvyd5++WUAQ7sJyVe9pWvWHawIr+ULX8yaycWo2Fc0qDffqmNqzpv8KfeMuLAra0gEMInhnPr/w0/tW5hAsew9qXQzfFFSneMIW57khDmLfwwdJ1e8Jsw4ale2HXSMoaloP5GaKY03WHNdBTZ7o/AjmLuusA2dd/wiG4MMlqRmoWXRSKdDNVzRQjvdc4bJUAFBRWgjfJxBNfPx+j62WWODr7dqpqmhKSH0zIcqtmAu4r0IHQT1DCplem7mCI8EW+cznynnWdWU7yW5d4MbI/nGwBC8Nd3fN9teV5bG5mX1llgSIjUit5T9HxBV3KXW5vWTK88YmblIPZ5VunnEeCdx5+ae1uLEv3S8tUCV4MYiTPBKYTdw+v//6QHtpmkxtewKDeewAqNHOtDWjqjdZYaF7JRZiOQfEwuUVZaawj7jDbjPB19ZvB88uZFERlkCZzHh85rxD7XEP+TT2eaLS0HCCCkaExDRAGuDBl6y5157LltnTLppfriw0tQnT3fDWa6CQhefAxQZrBjSqQYOF+hPKUV/zHa6YCfy51mr1CH/MwoI8dm656wCilY/+R+QS/NR0rPrmgL3fdX4ex/G3ty4qJ2vDbO8iZ1pBOk4HtFGFxf6DuNtamzFm1ds1xw7SlPX0G0/QpRK8s0iOdKm3g7GAZxhz9u7FDY7jwpXPsbB/vsqB1T8ur0Z0LnE2CxCGD3XeRV++eMu9cGEwq0E/AB1txiA0SIyj6ry5P/UVYFv03u4rFZLvyz0eEwkM79/c/f/+9oJ/OqPoDm36+xtR1Z8/Nms859VG/dnj680L6cwGNPMzhA4zcqL9tNLRZkL+EnUOoMnW7dV58dbGzvCDamePLTRs4g8q9FKOvPrYXExpc+0v5g3NqrBRf9zZGgI/yQ0OETdFRJU/OcG478uU5FqV68V5AGXu7BBJNx84rp2Lg6RkFuVvKjkGtHH8sPZY8ryqWyhY2z88CeM3j4J9cSpxniH7MpGfxbWoxe8xoJ3hS3uyrLbyOLxT6a1zXKjJ9Vq/1aWtpToHq44sl84YfjE0THn8qk2rB6G1rgY5+BJw2D9+2y4ZP3OofxHpcxObmiFOWKFHCseV6TSWqvBiLrop9A4D8fF7Uzad65et812UhBf/SpNjAi+UaknHLUg4QhMWAy92dyaAqPB/gMOi0W/I+VcXi8SqZcuT8kyTmFCnFyry+zu9U6MnST/gLaQ/8//mjKD7YJDLj98JEl828B4GGb/4h53jIfHH8se07oPBCH5V+/Hv/QCLUd0Er8nH4UlyBD5u5SFFO3sHG3L3ffyUgHYwcuUGKScbpNRUwC7Lgr8OjSiRYzJxdzoCRdiwNCOfr4qp1jfN5X7+WCYXDoWRvrsGegVKs4/DdhUzcV6LrwZG4FGVIelHkeDnubbOeaKmOQ0UpjKLmdzHV24JAbLhhzyMGCWb4pgox0UNK8ZPYQBnHP3S9f21T6hEX+NeqqsZ3zNVOUvgftna+ngIjDbkwjafyZuUW6aKwjhlqPEBIGgcjdVj2TZ4YlRdI8oORyqHRubiyFCOs0S0j+SYe5a0jfQKrPEpm80R6kG4cLmoLSd+6+KWvsyv25HmRqvOWqBlH6ckmTPr7sSxtsp1iwGX9KLlFITEKaBT/etYSFRuSrrGwdukeb2CTwjeqfMNYGs55giWAWYTqqw55gtMa5gKzGnJ36Nwzafcb9EbHUDgDLAecv2T16zSHWkovp78yDXcctkC1Tayjvz4qk9vfDj1UWPl1ut3EF/Sy5Gkx66ZwJc9WNT4Wb+/9yR1bqQhKc8c2t0kMqIJ8zDqVS0cFLNa2tZb666yh73F9LufexRPi8E5P8WUpwgaov83OhyrWRQ4WeCnCTOW44pudydk7/ZTB4YOdMuASXIwQbJ7Fq2Oa28EWaKs38Zme+ONs0R2LedIl0UWQeTLVlK8k7tbPxpIKjyIejCFab1sQZDVQZVWvObLuM/MVx+9Z3/maBzVYzYVpO+E9FhdwhlEoBYgzPYxZdVmyLObEHXvj8PsrSFmKOa8yN6alYGT+4ffdP5KLYHRjQZGXmsu+ObuCtZ5dB9dF9WwV/z/2PVJCWfKcnSmKd4OwCech/oq81D/spWRZlTGQXymkynL+a+cmNW7iTRlFQMGr2OmDQ1v0nQQzi/TEZC0iT/A4M3shTmsUOHKb+3GXbLXfmN98yd6Y6PEaphS2MFL0EG68PFYPKS0YeevLP7P2bRYVC7fY+fp9D7zax45mxulmzV/JeracDO1qvEY4kLdGB8hkOoPy6iBK8psBBeVlBznOEz2NQZlOjEhOpn9PlxslcvbM+7A14+35zvg7zcazmG+qyAr6loLr25k/S5o2ycViq5I/qd6+K9NvsJVoonX9Gpo3Re3R0h3Fxdzs1AR27mhNlNLoKefwk1RN2PuvDh33iwV55EhHC0jV3ofZdBvvv9TDhhUYg3FnujhfAY2QNtUltd+gdHg3+u9J91wrzE9a1wxPzoTFdkv6r95Kg4s2aRL6JbNKl588PfF4u3eL6p2SVIatTKdW83SrclNfGyAQSFEIo0Nl1U2pxUhFHqqjJmFVsgUGFgKJTuIls5KWF+xTSN5/9zePQA2aIvJ1T/Dl4Ou2hiNdDkleihTJHy3D++aoNAw31aXGGf/Ll4CYDHIMMktce4qtNAi4BhZKYQ+avlloQKVobO+RuX3Cv5xNrx3pP4lSTvWWXW8B9gXKa8mHLy8aHOCiSPbs8cba6S+ZacDpGLm2OMdWh2uDMSLh750vFRRc18kiZfIleS+vz/EBNT05s/SWnRPrIbPYCZR+gpkXg6+CDlwAadT6eun4lVVMFOAkPhDo89TDaNfjgipu1NM6O7fFrxS6+TndEX+ukGpw6STGYhhNIB6qqgBP54CPRjvrP9XpIRCqohBEmUMkbkTzIc+1pF+OZ0tXPfRhpgC8y3ChPzrJB3P2DCAM7d1EglClNEVPlBahzQgL85oMZymrUqhi3kE0oUlmp+Tpcwz/vJF8c5MDwSVchfthaUpGv1bxAUfzo+Y62EN9xEYqLp1Jzsq1PoVKp8iDaVqCD0Gx7CACa8Br1tLmeh3fhlhcamabBG0TZmQ0Ny9GHk6Gcvgv5mljZySkXt2WXrzYQVxtY2ZFsH1dn2hKf1Mw4m6svrPSb98uRmlXyvoqqEPoUzj14x9U+tYgs20YBAHScF+fPEPvIbVIFKV8BR8JCSVhwKgle4LLmqk6FEWWDwpY/Ph8slgZZossLUiUz5mLme3UH5a6aDB3oH6APqNI4sSAUFW9INj7ESNwliGCduhc1DvADXBT/TBR8l5Xf5Sy/l3TnMBatofO5sZwP5RAydy5S5QHYIFwb5SWFVJ7frQ7G8rVGwcHC+2iCN1nsGpfI7w2resltbioV3hEKSDQUQLvZ3bJFjZwi4Ha8O54hEkskCejC3EyEz1wC88rFzpa/O7LwjD8kJlCuzG5kpQEqAqwlhmhT9B8MKZS8UFxoGpJNk/LIwBkmng04frF/ZeiCy1s+I8WpGkDAm3qMYqeRNNxgKPeZSST0nTm9QnxJPs0TKnaD/GEm2vt6Vg1y9sp17aDyjkd6yWv35AiH55XGQSBxIiyEMuUhCX/czkPgu5hkwtyoDd6VLGiN09SJQXgZPp1XlTxUsOrTB7J9b8/26zKraUKnhu9i53RY9kVhVJCznIyg5LcHazEyC58BTiBL96fdAnqF7io6ihAJGLuMGateZIjoTysfsWKWWW5BgjFOU7MXF/bo5S1z/wjV0XhIjIPM/6KCx/QqjgeqrkAylhH+WXfHozvFBoBo06uPGVA63F2oLkFexqLwUT9AQu0THg3o+AWIVzpuJWZFVV/KxMqT3HRbPdWwB2M0NowNlPVBqwy1B18o+xPQnJBGba1/rIOuz5w4rncGJubvkcGa43+WtbkSofSFR7F5BQjaM93enYUc+vB1Jo0ODhTjxE5pUuoAeQQNDTz3ucM+c0tSSnS9KuCPh1S5fQXfW3aUkbz95NVqljwyZmG+jOfpCg0rZfTINA9LMQl1id7y1KI9mcoTxTCcAwgc1S6KpWqjOKlgnsaK4B6QpbuFUM1gQOqjsvXmW8WpXj9aUwrIPPyTtcGhVIHB+V3N46P8vkxqsCZjLHunxOjPE5RYwF6aUNuPfTP4u+wIz48J9UWElDyjRoOdNMtGYrR08ZAR8Ji66Rlt4XsGI9CCrAfU7XjoJfxmYb+IqR3lxEOLA1ZBcU/gG6PwI1EPTvN1yO2QQySplxKI8lhhZciff/Ozlpwff4/hRA+5V39LAhTHlTxVLPKqBCWPc+e0K1agkv0tdm+gjNvKicFgcK92UCc7tnEwy3M0Lc9NMFVoseMoM42tqZCa5i8VqzRPzOtt6MeEFaVa7BNQxuPLQgLY45ZobTKZmyEpF+u4LBrdQWGdGOnbtERZ7nJAiBzAsNvrekjS1RVhaA3isO5DQLwZ/QrXPEkS0ApDJxVStL1Usw90Go5lZkOi3yCY8hhxTtsB73zy5waJoZn8sCBdg7jpCaE916K+IJrdbATYdnvj35UUUqmlaQpRXmcU4t3JNzdbnaI+v01yQJj3wwwyxjWwwrlW4YjqyR55zEPKINaPddtXTFD+kOUfC1e6poaJzUjbd54uTSUEYCi5ANGAIVStHYIwwWaEOzO0Gc7o9RZADLiwsguBuDlayNfRlkNfBJd5PQBb6LMhCABpVNKBve+er+PXXsPXV3/c9iWSW490GRsC10cFAQeTDiuyzrh6bssSOXTbK0gBSWBgLueVJWlfJa2wORFcVL9evyJv31pzKxSgStWFf0MpRG2I77nz3x9273ZvU2OcS1jtS7LcrtPNg1urHZBO16Pj29z1Di3HglO+fupN23uFQNHsyJPSRU696Vw9eJn33BGTGgoPXDms/W+QhFBAjGNtjrrBaYcXo47wUJ/AS5PqTu4G3AzWUUeLvMP852mP/P7w2urK9VVap2h3xxdgq2X69ytp36vWtf87LdOLbqmci3j0l0Fu/pbRLxMtcjh4ex46J/vbRPZt6NUgHfnlWKBiweNFrQsK8qRZPnyxRfP1ybZB0f739mH024nyBQlk2txN7PA0viMpRdHfebx5te2X7OFTveY0r0107Y6pGPOqom1zi/zVdi+u7w6+W5m0aUcsJsHVccHWuOKJymHoMRBVM6tcDsyrp5b5PkkKyL52RZb2PpUkwdfMNwGtV4+dAUCRhZ4NxEbfnNICqEOHVA7h4KYFFsbHeUU7xi7MookueMl64/dQf2DutTM1DBDuLH+1TkvYZhId5s0JSTPv4+P16n+wcjrwt+L/SFbbW3kFbUATiy7KGWGl2ofnlbgDBDAhvJ6iN8Pm0Jstovm6/tWtv72BKTCX/ytyFFMq2ObBH9W9qpYvNhu8LnkK4M18jLq6Oq0ZEHE+Nfw9e+ZhigcK5Qtf36DtBmcaRlPDNmrgbika823PKRjaO/GZouTmgj0shsVD1vpNqoyoah1rnM578btNLZGM/ysCfmaA1pnAZRoEIh2OvUp3uiLgJaGpptV6kGaykt5lA4pByvdbftwcn3o/u14pRsAaUExT0HgFg9GB0jDf+oP3s60fLguse9hmTIz+YmXWpLiTcPDPayHajOgekbjn+GorSbiWUqnlmEjbqSUqot1FCNLzvNhHemQul9uFzP+pCwPODQ9zLx8KBK0t8O/+f34gJkMRFFHRu4gfbUwnKpRkRZKj1EIFFrvXXESNTjcc1ns2pWEjWG5tdwZw+l4Mic2QZTFWCl8gf6RIzeG/2Nlb4P9/Wud8YF5higRK7VwwwDbtlZeC4zsmCS59lym4KTH5Wbi1YFC3EiyBzQ9s6z5uNNZcN8WgkBcB2EdJVCDtcne7AOXQK0wqmVeS88/yRj/pnJcIIpg087sxQ40tbY0qsfXCVrQXr/VqyMnodpnNiDlUZkHRKq4Fp+l4VehJRp2ZejRzu9XGR1kyHKXXDZcJUhmvW9i2WWZudY2TvieoXxykKM8YSzkO6ELbGwWGiAz5CxwqmSaiOJ4L1s7HHil9CcNA9OyFLP2CknkZ0OsUdIXW+Aoy1qa/BURaEQy8lzUAon9VvB+kbeN8dqrj3jMci+sIx++EICq8jpRgyv7p9IA3iHYYEKQGWfZB6dDAmKT1sUFAHux+9KzeTdIRIxyxHgvxai+/mv0k0xaSHvkNMm6Z1QTBj1cUFLbGzZky8BHNfB6HE4sCLrL9+qe+EHoXZFc+rWT2xvAexO2NbL9aUrLAgn0wonbzIorlKsPz1B4rshR3n2c4QGIwgmKXxlZsBaFKsUfSlKEWx4DEt9RjJ0B3MQi2pEH8zEG11Qdu6ZNkPL6/j7vHXfrXIYgHBeLYEXEALmIrTkLV/bVKxr+8BFjcCzDtDXKs5CFBjlNGuTs0k+W2Nd/vEpwkdoZUIRhnOLglr56nKHFrjgv46sSBc071DxcatBypL3HpaKUmbYcMqODVFtD0khFoFnnC28vo4AzC/ax8GBjzDOQHOUmL/WqAFxEHBDfufU6RZuTll7XTnGyKP4xzJcgNnfyk65QU9hN9TgTJW1uyC86uhH0m/tJ9m0EfqLuVhNrVU/jKxyPV9wF7u0CYSI897n3FyVm4awnal/p6wdQHGfoHd3onLJO06gTimD1Uxf7oXsn1kCVNB2KpUEpXcbyIslyqhyNXl/6qnvNcqiCZK+jJs1Psi+8HN9g817wFsAXPtlnBeCDPLR287Ubs1v8dBqNn76nIPGaEWkwqABwU5A4BQlEiyeSrfFWAhdtdHzFyY4pmGIvx6kuAV5vzrtCGVya7cU251BXBuI/89E7AgqaE09jO3nKu4aUm3QKJ8fOTpKmmckwQEFNs1/8jUNR6YwOlrTfCFP0OXyVeX4/7IMjYRbenJFYRw8JygLA0honWQLeJT2s0Zl/x4vyzSjQ+rJsOSy2xDKviVqvTH6Afb4jPETAwXkxPnH/iBdalZaFcMh4hdTEvw8SioZH57H364vNXVA4A0sEtBnUPPnNhxub7a4VCoMgSIJAIa3GejQvMyPLz1+jFjyy9+CnJRDivFtKmq59iy9dyU3ylj2irISd4aHKXsaqMQIqGE2PMuZ17xLl8YrA+W7icQeH9gCyJXu5XSXIRF6EjuFt3RRFK0xVTGafQi/pdmpgUYMRYflrVZSOBejces8zXnq1Kazs/COPZzxw8lwQw5yT40xN/lXqDy+3njCc1jBgeuYra4fRABLrnxV1fbk6vEpqxv7sl6NkTz/h+TxLfsFU/1YDGQ0HsYOD8UY9ZMrL3POKcwMt4atgIV7AbZykOrKTrmhdGajBJmwJXUZHlUjog7llwA7EW9cSn28lDE3ito2Mf1iz4tMyl3O7x9LKZ0O6VwUdL8nAq5jhzO1FDBcczlmdGww7jd1XTKVeNogUBLb91nW9RESZgD1R2MaMiioBttwhhZ2RMmkcLqYV+psp3vJBcecPN0ai5kDGZVdbOmSd3U7B2xi4xRfWlK0MXow9ISwRochzkitHyRon6plRMNR+lzYf2kIbKiTR58T+K4wzQ4oUlcHxWDZUnsLohCEX9byoTW6hCP+FFIytSuVlbGWvPyDs1pq36GXUxLJ5YCJWm5cUzPRGSc6ugiMvJTqvnMQmQE9t3IzSUQTLMB4pMvBB+c+krL24rOoEkMIEAKjDftpsMZETaEhUespaEU6JZudni8rEKS9S1oq7nkm2FNF+uJWqflSd+XL8JWTxxcUH09EiApcf9OQa7LnXz3Z5tKxaJjgOeOoSHn2nV1stL7ErV6gJe9qmbCFJZMsd+A1ixhrt1H/YY2rfwWa/Ad7rIEpJwgCSpa3Gqkk4sBbtbIkTEbjYyGZ3DXx0byHzXOoWU/3lh9KU7YdiDO26hD6dyEztoHi6vs7ga7xo31QcbJwlgA6w3rP1Pg46Ged76GXX++2/6XWaI4FFdy0JgZAVyZY4J2BJMjxmvx8S4E6yhwQc2S1ZRTdoK1GMJIVgsmFGENj45zxNI/HW4Qj/vFLSZdQgF73jPcDo8v1lDvzJh/LodTYg/WuNcnUIuciTrlwjDIJkF0s6WEgG6z6ygBkxI5SxNDytKHAluKv4gsy5qLn8hhHRnuduvAkr2sV45eJggC8W+7fS0dA+LxPkIOamCO9fGmLBMyL/zgfuj8qhATX5rjX76SylNFPgs3Ju6DPIAAz0dIo9GTfIekqJU+bVGbWSq17JuHreXwqnH2hy+Qw8AvyFj116IXCcwfaTxpG0oV+H72LpiUdRuFlwLRn+OaABTCxFVFp+Xqw2v5YemP9jGnRDjjIq5iD9tCH1WdXX83pJ8pOo+vJ5I6waAfDmT2iWReZHrwyG81a2a/hzXxaENm3ao8hNrXzsZYTj8mZfDTTK85Bc/H4Sc+shSlh18/fpTGbQiqrUEcOH4AEXRXyICAb9SLSBP6AOyuhgsHsOWoL4xg6cJgs+vsDX55ET719WNyewUWK7yn5iri11cWdIennoDped8FS+z7IQjEbia2jO9abL+ZlQUKaPvj6BDEGNXS/QwM5M67jvaDB7OZ6lqcbg74oMM7EoHANw435XCRWAIWJFcSArpuq+J5VMrT5RhIWVDW98hZrbaFfeJhuVX08fONQKz24JrD7eb1OfC2Zqb70wrGzSWDJpHXke+52+njVARKdD77RoqAc39WKmKygIiKzsUQ3KvkDVcZ00JfXFZrtJUD5zUnskonpTCQKrUUYpioxZPz/Bnp/8HszQPkFvwCidIp/bOOOvuNxex/MLOc0EZIc/fFQ3wHkWowiol4BuJNkWxHFuOPIRjhwIN3RefKGbsCes3/djhmEsBqRWEbXOWU2Pbzrgfe4CNqPmQDiYZV0IJE34mG479SIvehfMoAu9b1cjmciKF5zPjgNIQknK0Oi6oFv4Sb965pS/uEKAicFYxaiW6+/tDRqnHeOTtIguyYjXiWohXvAZVVA5I9LihGfOjQ8s8WKKPNQw8TnLlGwoihlIWYqM0wbDI6IU0WfAtbOAkQGMWU8brzNmETgepX+afhOgyNjiG8CfcSlUcUYd9ExVWIHhA++QHoQr59ZHv6EP13xtDrLiIAgQ0LJZ5oP5ZgSxxUpuHzDqwRkK0g3cwgwmCmGN5NtH6L0sP027RKuiUmhTJZql4kDunZrRAmGaN4pnn7OiiiF7ktD7Qw1XgONrv222UBuQ/TNZTV6ShsZWfY4o7AxD/HVSLvxnKU7AYsjlri+cI0sS2egMybgYLEcrjbEln/Mh9+Yi03MopTr4fIcQaI6xQ5jyWL7BMHydCcUMGL1HxojJnsYCCf6iHq2y2tQCOzbv4il9gsslX1lK7Y3pw864DWF6EweCKjM2rj05wvhS+Jo85hWuvgzFKFTWwDBnjPJ9xxzwOoo2dgRO3akgULRB3wzP2tJxG59vGntlgsHb+iBBaPfBmle1So0cwoKAHnZRDKiqVSsvKY9A/vlitaFGbzLx+b48OBibtOEifZULm/3jH5SvLQpA9Vzb7/iCwCRGG4ip0r9c6eceHVjKJknJIog2ahHexBrRVFUGNWaIOLKDIFZjjCyo081iAKGfhHSdWBcFB5u3B4Wr3MrrMokPUXzQNPLABOUZRcMLLLrP68xiP/Kbb2QBTakf8MBKMkOz72mW+p0AE3U+TaMJrNxATi7N7Msvx6UWjMSuQdMVuwJZNCxQnjLgzJc3wwR/Op5F1AKNwh3uwCiEZQ9Tj6o35BocyTUIeJ0DHMiaHG2OGx2Pm1LgHoPEJwcmYSvX4hTlFwNIL1wlF68797cfMGt8ZWdi3X8bti239iNi5bev6UGWPCkogtFsTgwwzGUOy6Xm3aulZBfh1U+aNBfAneYi9LA1VhVMjPQecnHCvI+tZPdNdxq55SVJ1gbSxsqbKvUnO5ygD0Lx/HUn6dUUb7Rq2DdC5Sn/nRv++S6gpDarx4LHc2baMBJdtwbFFgEgbEbifB+LU+6HTTNXjGaPSyZ7NhU5nTNK85lMuGYJ4GHn1dbPuSMG3ANynnky5gLk4j/2oyF9S7v68eelafawGLfDOl41k70w9H1VjAe4KqDJp89SPl/GZj/r6g4mAfAWQviQgDSB62sZ2k5q39FH36PFR48/nM2hIPNV6yRKwrukre8Gxd8UTp8lTSd8UOkG7Xps/1YzyEjzDGuuyuhmREoCzOmbRpMiFrwujAXvm5s2mXHR3Uxs8R7WqB7oUUlkS6j6b6r34DxQ67vryc4X7JtNMPcuOIyGpEPKSZnqTORToFlWfOrRYItas1CKMJHGxbRvh9c1sUZxnZ/l8BO3HpnrFFsQgdCEYsa9xqXb9vjnllg3oQlRKs+pYrSqSpGGUHPiD4AmMvRMc/ho0E8q0c9M2rojgC6GL1UMURrSX46fUlyMKM8rO8gzJNW5Fn6Kmg8GSrqQLAtu7qFXhuxzCsCVJB4m0G1k4YrhJdnOOjY5l++YRbdJ0CyBLWH1J67PYkY1/8MjJfep+jJO6tR6Q1afH02+86811QWJbP+xebXyIzQ4fIcdtA4JUJedC5879L9wH6PBnOkMCpKiTNDLo43jPoa463dyhhoDdxxjjpDnzn6g6cuCb9qb3JolWWCwTxsFgHD31SfF/3VTyGw+x/cWhvYpbLazBFmLkeaLZChPFHoSzGj6D3SJ3PBkeKY3gdBgR3AxxqiiZF6/vz8QhSfz8r69DpvtOmAmhG8U4XxNwEG1jJKbRw+z6cJwB9qE8yQaZ5mKUYi8Zgr3Y552tdR6TD3t7Oq0ZX+UTvjtxsDEFoFj4Fy5cgeetPWBzrd/YkWUNGUwUNiuRaCtcI1geo3WSs48ZJOBxT9G9+9M99UoBcV1ynRYcVEDtpctnngUy6m6N9KmST9aGCgqYB3lQd1hYkNJisN2UMkh8d9KTAj/Yr0c52uu3VxFFwzmxKRDA7oHshpwI3Jrul6KYqj16fdQsBDuEydLLav52hOPpyf9aPy76m6L10IZ75g6KY96RbddAi4pAimkE9mcyCgL5of51twi8reKIBSYnC1R6YTYtYscQusCYbgpCP45NVvRtT6LZd8EWKeVh0oHRIZ2Z8D8ABY8mjxsxrV5gmGYUXJxlfC2IZ3cekDvVOigRAkPCIeMygUYVJk3e7avZ0WYF2quXUKJ3JOgmA2fZxYCHde6GJHs5+s1/kaDVx2QPaN6MV7sWsjPs5lOOgQLuFXuAZAy3tJGazPKc76owccqHS3v4yZX//DfBv9gS8KqnQAMPBAOqBvofx3Od26qObPXACxO68m8B3s24kO9XX7kfDk4ay1/b6nPsqL9gMkEVV+Fc266StiKDEqsvvESdACQNENXmjEFZ94tRikpotmvH6ZWbuuump4sAcStrxWfJlIFIBM8y5BxnmXo+6q48RG7p7aQAPsgQaczA7RZyHVegDuDZs73VKIYidc+TaEJ3RBpflEppAhAqVXgrI7AaIANUwnbbC0lP9YJvHkAklLX2EmZT3QlD4PWXaET9SI5A9kziBRkXV0SstmLM/B+p8bvjVL73z1LYiub7xlfl8C8TY8nW/JLWfcJyZ/2zu1AxJQftHec87XdE1qHbzTiyNAVOQrA5N+x1Xwm21dEyKdBTpaECkmkEO2eAOQdjJgmb4TwSeYcUbvuXhT//oN51rq3dbvj7O+0itvjn8qgEy19TG8rfH87Z8CKara3Aqq/1pipuN4rfhe/dfDu4AX5bfcYrKaKqPxUPXR989NZeWeQUyHx3Sb3r5ly/wvN6+3rW5fQA4YKPRwNrqjCqzq0GKwOsHWry6A+fkTQkpCRvxwntm56FlCASzQHRg4q9GUJ2N0dql8bJgWxB3r1qfyeW7pV5+PCbqdcr9zk+kD5MXn3sdsfyje3tR5Lt4Foy8nqSxnKpQp2KnUMdog3AnbFn/dvCzx9d8nwabXpj66339ynXloN8qKL95b81unARG+smtntTNbSZt8Of6Z2K6xi8ao1OoAfLJRHU/qdYjRuqZV8L8WI9/fv+1c0Bwcd7ftat77qrHwOlH7H/O3EXbsX7Pfk7xU8MJt50S/8LbP/rKv4/dKhZ/2Ck8/6+b9p5hdKL7uPf3yUNd4xbFTups8t4Dics71ClG/Qz4zHKbuNJl3LPs9GBmkQWiQonX/nApw0QExeaHxb9ZX+0YRixrsfUPTf0FlQh535BHh39H2Vj6bItozgo+RXK7k+EhNFd/fcJmpn3L5F17nZonkut0iGX1Mymut2kYpx05UlFpmWft4n/LQfdk6836/7s+6Ow1R3dTk1ody7+FtQQmMWbsTehwUB4IMWtcLjwC1xnJhJTXcsq9kM9NFf5la16UQKER2jaXLXnCxMd+BPadEn/BtoVDT7fNvqIpD+xvApL6vzTa66oZe9/ZgvN5bIZpiVoP0fXcmwlIyB/rHj2XbRHHZmQYsMKyd3XmpNe39/Mvq9CzHi0v2Hce6fdLhzUlVZyKDd7Xkn0TM1GmpdClg12w8GwxdoJVgEflO+0aYxDdpUAf+1YBwFLQxwsgZBa3DL6dWgsL1ySoXNueh+gfQvvXG279CRMa9x3TVvIh+5lUr/vB5LOdXXlm15db5SP8DG+0UG3+A7Mx6bJ3ZL1VOeru0eaXYVNhdta50QYKHd3Y85tyXIKYLptSOjjUUWCzK2ogstFwbO0yhNUAA1GA5Er+AzABe5oNYLCWPYx/fPafYp57zsW3OAP1fIePWhiH25p4t86S7Prx8TJE3xMwsodOLXAuQLq5FiMx0H/f1nw/fsCQcy3TV2S2O3t+9XeZe5fwNfNG6xyPimwgzixXiaE5j//oYqBehS0F54Pg9qEJU+JpSX0GYHsPG41IfczK2ba/fPavbVZ7/uvqygdAsqs30v1XDq3SP/a+MRzX6X34gmQBHovef04k9DhcpLXVMcBTPT1SpqZeX7DW6c/lxdHhIsRmbnP8tN5auwnRcEqfvez2LB2yFqvRyb3RmFyDAaK0SpAMWYjxzR9mqDMjbTvjIC8hf5mRv1Epbt2H5ZUfbGlnTBO1adiolxsRgUSqm8/LWx7DMurPAnxuDYMMngB2gey9enB98FQFAcKjCM23smUUo2N/U8oNZKnXuM7WO8VE2ep7j/EE99CuktNsGfIuYk6XF+qqE2SeHleFyaK3ZAnqI1b+2PctuG4EvymLmwjpk9RSeV7zIEdjNFNai6lHRw7tIcw9GulXq3P4gTswPFP9/ygu7efhhC1y6Iibu5xvI3SQijVaN4MSmYL1ocXOpHAw9+fyK/qKnwTX+rWky9+QNq9wiV0xPV0G3Zs0vCdrl5hdy+jH5iGJDMibHVN+KhvnmNgzlLq5ThoPBiyD5tDFKnhlEfYAzDNTkR+txI9mZPt6Bh64zEEmy2zP1wxSpVHaHQPkCDz/P/9LACPH4UihB6WNE0cVQWVbNw4YKNP1rgLnuAD0rm/suDO9eGn0B7OuMgATwvZlrOu3L7lknArRiDZ7KgEzl1bdgtOlFKCW2AN5HtY/W0kWyTJCEcpzFKc8lSWEVYyifNR2InqTlBBx6/x4uq3b4ehgclN7Du9Y93NKt4o8haxIUN39fF2bhc1gAziRenpnC6WCOt6W5jRSB6tEECcuNxMHw5dk2bYArkwhzsjJXMDx0EaZXa8ILyG283uukbn0bk0taF+KlDU0QpuTCqzPqrnm+K/F9+PrsGgSBm7ylU3vrTKEdBoTkgCOQ9r5smhKbaxqxOZY85vz9w1oAndgJvb+brvl0/onariLR7wnbCNdujbE3OCDOjmEENL3TjBd6bA/saNycsPkISFv4mlQ4B9LvkrRl6loBoxqNXUUXV8YbQcWwMcqLj40+3WyhNE4LL8RZ2Tm7NghFZFIszlrt6x/01sddWcmZJn4AeWODcEYvc48TMWaGU3nFRxdNZ8asbj2nOhJe6hoArl+HILCg9XiGtGTEKy3w4lZPeQ2YRSTgXYUQ4Xt1LW1lOHLgjkE6quTty8O7NXXcAgbciccYKtTDq8wTfh3BP/tCyHwrflmbNcogBUxX2hO5rr6O36A4f3yxmXz4HHU2oEJi/wx5wmjYM4vCuB94W/UfwP+ExkSVARAC1zoDiUFDf+w35nVUMe9vfFzceO/HKbf/t49c4qwqc8SVuTDw6qCRQU2e7WWfeHUUns2RjNeTp8hAKoyU/t7U8xhW9tsPTA8wbIzot47qEwgIOL9TU9HsmXqpgphMoCPmFaAS4jtsvVf+aHmFu6h8+DcKn9p221gjofi/cxu1DhOQ1PM/E84+7vUhCIc7qVZzwp96t2zY7j+tdbs2EXTIWlZOnPMYa8WJeP8m2Mm+XvpYDQTGH4F/W8/z7bQw3ppgXAxypdT+xNFYNUC3Tv+6ZBfGwXUJAr8Zii+mtVOr1ied5RSgUmZf6shcSgCrMNER5fi1A8aKqiiH4+ALAju51Rrot7L9fmdET7vAHhXBjuNe/8+mHr//A1sG7dQe6z2A64Uzt9e52hsxeiuF/h8RAY2HZy3d7WxYAtAsCmud5uaJWpxAHixVbY7xY22I2IOOCcfWWdxUOhboWobAzV/Oz/xm8MnfjQwNgATQI4TnyFMsUtR4prONPHFZN9wo74BH52gVPvZ3hcDCy0xZdpKVwehTzvaAfQ6fdVrHh9gRndleF3yqJZePMWX2N4hTtMm1ub26MDcrT5Hwt8Q0O9vxk9VeBMS1gbcU5F/5GdnnKqv25ZuImZI3G47Ot2zXJW+G953wlIZJ/rUWeajD4NN9GN46OBTkb8kDRrv4+J4xqIzH59o3OJgqtzEWtdOd/iPLkt3J6ksBmPbJrAPDoqXmjq5mIV1DEz78/tqdCAioNwcTPh95u1UygJOxfqtEaFaMkYTq0eKknmHFYYSbHwyV6MUrL+AqXeyRumWTPsl9w2GVPeOLlaEHI+Bw5v3RaP6Bl6eQLvhpnp10+QAIX57PsnkACClLzeTZlEaMHbzUEQfdnRSlq6RiaAYhphQTo4pYsBeVKcFHJ68hAmakGv3N2ahXKGaqlChm6WEdOO9mfCJRnskmOVBeTyy0ZCt8Xp+ZoKGKAbuMVTrUCp4e4y15GthZlB+Eg+FR/iv5JQ3yODlJ7XQTbIL7IXkqWpHxuYHmava7e9NLdOrPvhZHh3Ro9CIo8Vb4oT0G97pDDCpexBAT1g4N/NsNXvixAVZjbE2m7T6zFLZNzjKtLcLf/wEEaEPyIP4UFaAB2lJ59ZhHNXQFWV1gNNdt8MRG6L8hNTQFf/mpCuG1d/ILN+tbV4Bei+qPglhhpinZNxJQgK0JBXC8wV/340/r3I2ZAWyCInzkMoAd2qPqyAl+9nTH1lDU9APQSQ6IUWX4bGmjD4m74PW0AEvpP3KDAiOIZSpAIdYmXem9z2wfrKLuoix2wwihzYuaj2nZlZ0Ln6qF1qd9XPV4+yeYpwXc3phXQyg6brBdmX7iixxIAxYTTEqEWgWsHEuBEmysCLfzJN8em57LC6Y+MwX9e/nbTdRGHUd9EWpBzfUctBr/KBdxyY/iW91mo6B+PjoFPB5t/GNQBMVcVHQaI4TwmOI/xZSg7iADFh+Q2aAppgRc1gbCoxuNDm2Rs6iJcqaM9dWHQw1DBidZTsA8bLIgqnPHqZ75niyayFB2LqMaR0lVdbDYnTzlO2YoRCQIUowirNhnxXbEMZ4f+ezx3Dr79YwLnQOolP0LCNQmptPE/C7D6oypcHxPRYDhQk/CJwb3m8Xrvrbo7Xv/YlbDul+f2j1PzduWwM7mdChaFzY8s0DKoqhIccybr/ps4zx9HzC+feFxFR0wtmIXTDAovCMeCL88zPK1EEPMUEQUjWYk3Tvj/ZZ8dKYtz7fSKGw2gp1Gw1n8SiU150QqK6wM/E91FTlLnS7EzkgMlXpXs3jBs5cUzll7sKGY1Pio3s5dRbeJbXF9sa1pB+nwzPQjzaToQEKS7s4pANjLdiSsBLkEJEhBKu4T5eZg0KvSBYlOOHCU14O3e7UnAPZimtBexojxnD/n4ZhuydYNRSCN7CTZTtHGB2FpMvWplNo/fejiHapWLZquerYm4tloK1lGcFIRlxISyDsiD2nGxHuZIGSZoAa44X+DEv1S6U5ietIXiIxy1PNyEcsz6Bwg37axp1vmZ+V72vSNwuaZcFkaVZTxvT3CZ8S8EvIkVOMujGBKw1aEqaDUoRmnvxjo+kKAU0j7D6ZYKfsvG+beBUxIa7Ak1bmAkFCs8ILbmPYH0XaiRWkC7rZUYoIDHp+7Vg3XsOcu0IAiFk1amqCpnYjvAmYmqlcFCkH1O2pgg7pl8DgGl7xfOug8YLG2icopwexCmQyJ5qoStOkydCdb60IJAfhe4PuDsa0T5eI/DFTAfqRBUcedcORhZd+vlgcLXn7gpNGImcO46SqmGi/oPbdkf2Gz3karUlBk24o1o/CxNufzEXNj5H4mzwVrPse5b/Xx7YMUHZgz2A/L03UxDPy2GUn2ExZDnGwSzUE4K/Q2M6ZoMOOg5owcnRsZr4IM/I4gy2VigscB+JZLvjhZBbInG6/MDJHC51cHzwHs/5z7ChFuPOq7+bo8NqrtjpnzZ1dpbkeL++vJbPurT7ee9eGnK+W2bsntsQxv0cxx/P5K4IUVxoeUfbW/ME5oSRSPmW6kw+mxnOuKsCKx1Y6Nfr/hdlCXvu4Xr+Br4J7u3l/s9eL0cczrvi1cW4wuYgT5d5nzyFAZajqt2G1kBt5zFunvBCjVpn+NMX2UkPlDcnwPV2TwpOGhoO/Vxhxn1UZzyxA0czAlGBgUdfQByDbkm7YJZA65vdfQLGNmFizWSb1HKmWZjUwT9xqqZ35Ba9OcCEB2lNc08BwD5BBjpwIWRxwOgQv+nQ7RY/GjfGzEpBn3/PsHcVa337eTbtAvXrTN+1nufT3TX96p8pNcC4Z81dRj+fzR9dzzb3/e/ttSqXVStInbRYcVsjBKKqqKKaGtVrTa2CN6pVlF7tQSxqrVSe0Roa1NJSu2G1krsImLzjX5+v9cjjzw8/PF63HvOuc/zfJ577k0xqsFjJFLh8uiZeAW6Ef4nsqRChaTEFzAGLP3pvign5cyZg+FfYII9Sv6C5Y7fNBciodGa4OdNr81Pw9ncJt8LMC9vMfub8umd3crXeP2xRamo/mcHc9/UVX3vC9J8TuWl/GB/48IAv8UmR3Z8DjlDJxd/We3ZJ6Zm4r4e/DSTvfkfdvDYlMFpyCFJ3klws/CSebJqrzIyd5iBeuep3Fqoww+VuA/yJc7x2UA4+90SnzLQgOmAl3JG5ePpZQ10txFTxP9o1KP7WpDx/1bAXcJNrzkkq9apDcp23rokopVcmF80VI11scnRrHqbMCs4ytoXArkgj+dg2X8pf572mueqjMQKXgo3jfYgregiwfaj2o/a9C2cTtHtlNr9en8xmpdyJ96m8e+rXDRRMzbgWeaXGWdlkO/PSJXKj7mj7vE+6O7kJ1PGXBR1M0ITbUCiU7HEGi+6UjLdGHpmbYElNGaIRQMnS/elIDaBRePsaXIR4Tttn8j8N3uDoajXV3VUH4DQ4uSgn2VSi9efvGiM0b/sZ0yQfobQwZYDJ2tleBDskXuGDXniv52v9oySLz0GdfN50kVmc/ljWGgS97+iaItBrrkPDI5EaGEP4qLDrp4F9YvQyGlzIC/ltgmD42nXdUbMdhnz/s+ZD14DSB0agJQzaE/fxkWznrbPMmmcBe98+qg/mGz8IV0fWHJw88UfVm1hzSAWltDym6BEbwP9SUFbpn0DbkrLA9Wma/8RVeoYaVR4K86b0fBL98NbGFsXg49mgTdahP1ozgn0IxzIDYW+TWr/VRWr+e0s5/ZzmtD9lYZylxOHPKOjSc6Y72fGy70PAsvNMPVXFRdU+YY+g6yvtxU2o9QsPqKZQ+7ipGV4Kb0MG15T5MB/g8V+uY0zYhKXJAeydjxmp0HLovgLoGpKgvcI57948rhh+Epoi7D8bsR78v4txNQDptD2yZcpU3crUHF/Vp9tI1mbpWg0JJVlZqw8X2FcwpOFNvF3Tk+LIxNrbtXD/smxMdx2BYhBGHRl8U+qP/2ngHtCfcD/aBK2wDGayoeAoFnuEbI7hzlYmsUX74OkgdIfMlWdBfmoNNX1KDxZoTbZT/ZvMre/kX15/ulS4jpl0/Sfbp663HjgdZPm++jcMyAOtsWjA+vkLRNQW+d9gkewZm9I040WRxtCP02OyJq4eC5Quq4F0ZWfbnzAo+LkyadVg0hDzczZuzQ5Z3Rl6U8m7aV1KPexnqZf8jTu83qpicYarey0M6E66m+EZiC5ot38sfaqssynUdMZkBaPMgUrJdyy/1VMkxJn1PPo6LJZQkVOw6YwNiFY7d6XitfNQw4B5XMiiKWQ/pGKB3E2CmWcQ7uqZrgyW0JFKYkXkct/kQLe2/Dq7aikjeatUnnOKxrW739kovGx0wikeyRNtnnFb/fYN0bx2tlT/b92x+3LuJY/UygT3+sabv+HV3CfQ3PRvbtJSwidF8bPs+uYlfkdeSivZjVAhDPX+GkSYYPGtvCxtzS1bvXsGLAWfQn6CmSge1cboH3aoh3O6Q8YLEiwJnJ1PCTkfNc/3ST/BA+tWVCwv8Q9RB5hAbXNqoqRGxj4o7OLevcAxQgaISiBE6SZQHnvRLsXEhd/24NOfm+pjTOeBOcQdydNkcuiJ2qY496TZ4eisJMauNChcAFC8XMKZYY2qdPeAaX/aCFxdUKDe/3sjwwBEFTnLh3I6O5pOV/x3/olnU2Mc1rN7wsxY8CCvY5KEbm2sqRZBp7z3feZ9n9ZesNlyfdw6AiKYOD20Xr1TmVEqmMTlTe+RDl35PiILVyQeHLsDlO3Qe9stLV+PH/8WnvaY4A7x6rsz+y935pGKGFF3jEbwgudM3R83o6vOf3lzxcgEm79lBA/lQIv7p21brCqSfFfeQVhvRdaXO2mkJV9z4zgy8rum4cUtapAVPJTNvQIHiL7K1wVYdJkh0ZdYmclfFdeccbhO1rnw8bHyNZwvZ59K5Dlye6OkDww4mSLo/S/Nlf8/xonlBJQqESuB+BQWZw03ZeiHE8FeuzdPYIFB/P+Fab/odgaP+UOIzQBS/BkHrjZwE3pOo/QabryOi6k7s9qLDKxn82GsEjtffXCC/eXr5WmAbcEI2DvHQ9+TwcXH/YNd4+n74i4ZU7DjA/2uV6EPXizPwuyJFUfK2OoP9DA9Yj6bI5XbftfOcZhaq34SocTRUzwfEi879bsJL+IM0lJ5+tU09+kwLB3jo2Uz8E53a/+6pYcCWnW5TkzHuzmnXw8e0x1DLiuUAli0OZOhkJ8zkRcOJ2IHqHm7MgyCy8LaP3M6Vri9O8QRPiocWgzWFOyQPpj2Sq+bm//Q/HEhD2F3ZlfWg2xng8TEvZ7iTA/+dBtrhDrXNOXtatHGG5aGNXZ/SQ1Ms3NbQ49vsK/1TcLRzAqr5GSWra6PQvC7VJX+23zZqDhG5u2Y5r8eT+LDh9TqXuM400N666+WL+2LvhhMLUCVje5xtP9e9Q3j2Mq4njm3MohJrGmTPT4tePB34aV/en6F9e0pqwRa7UIkZi0iZ4m+tOGKDvNTDl6+PMv4Ru0NDXDDA7ydOJNSYjSrBCikVtebR7EGnKtV7ucwdE4dPZ2bSzsXGA0J2UT8UCRWP1Mp+rJ+tbtrDTbG5CXPiXPDigzwaqwB/6s+/EWDTVlapDfeubpnsBurQfaEQ+Y9o7OmvWgvYYbjZ4rYYqEX/4q2aCD7QxKBS5uugUef5Myq1f77Leu1TOlVWPtzKr5AiqhGfKspksqcInCR+3Kzla+3hado4N5JYpHTpYSW+1gK27HwRq5Oph004POnfCOyl+7QP6Ama4Szb8nYpv8gzTKrmOipZjCS5HlQ9EA9Lk4OYT9tgH11g7/RkoRpgrPAjb6pkCWNZl1dLvVabJ2aWHNAQduzVb1fPZGbvE6gMwm+Bxo8abplZncG+f5kOt9patZbznYWYAxew802H06XuXIrQyxOI99py2UaCmDCpTTCbkhKy1CoafOXVk24t4FpwiD+/2iF5+E53FuKiAqkKaZMTDE0x2nsKDUrtuBCyuXqQuL1ivxVmVjVTzyY/kSnmN/Cpd3N3qq6lZ2YwJWdpcFG1FtL55J8PunbKX6ehHm4BKwo6LAMGeJNqd0SpCiDo4WyLKY/a9KY8McEb2JmZVHKX4bSxF+lWGHfJiNRE+hw7xPPKCGSecwf3oG7PfHDNgLJB66R2LkJZtnp6dIgDNgcJD9tIpBGw/iHbtf0D1Qt5Z/9LuYpuQiNT6Eefsv9wveuL5XqP7Svd2v6bx+/3JCE+p6tiV3t1tmZ01TO/dYNbN3oTlh/uzzewSP46DPDxVfVzg1qcnMOOAa5KAiFylBSt4/xh5+fRWXPW7vi569Fz6znZ4VhX5klDDVSV11+k5ds++jij6orIpd1W2Mjdv/MevZ9CYVJToUddTRu315Wb3byakbEqHP1HKeWWMD94pxbC+OozpISbe0d99qZcU+sbpBUQuPa90SJ+X0tz3mnzpQwBz+sAs8WrcF7kbwjLCSn0YjdDS+8fp/P21nr8/p50t7cGX+NCnTgO+ctb/szO2y8NKtjM+izWwAojm9o0nzRYrURkPVe33756C8a42Wwwx/DBhyXHJsoLTpYz9ez7bm6164EO++9Vr6s+TsQ8N41FBSoCJJufxo/+YK1tOJDSdKYv1KtGVGv/Pl8/p0ls25bXfNLV5B6DLueMHDrDmROMAuaodjF4Z0UVccvweuNaeuTsBL1BV/+Nh/kzyKlFqMTqx83K0Mlk4Qsh8oPtxd9pS/8jhiduARb85rLCPDUbiOUk5RrtyK8v3jbTXVGjVzXTZwogMDHHFO3A4UJP6vFlxO/78O8cLJOIOXRZhPoqy0aOfFGBpeIbOTR7RjJFXByp3GBOfL0138sRjYQw5FcirrjOG2A0szp5+dCt73+we+rqdQkXa3jI7PQNcqr6nP9KoRBuL2qvlm95k0eoFsnm37x3FPjA+GeOVrbC+4oj++8x3hStv6fY1qAtL1C8RKLciPf9XvV96QOuNUwLwnXu99oIejCrOOJ+TENRbxHHD86mQ4+iL2RDJzq93Itqaw22MX9rk6fIXeenT0afmwS1iOFHm5dr3mP6zfsUjgHFnuWChU68XKbjOqKG9Pg5/ixx/RK5lDfzThbtuIijhE4zdOZMJ4/bn/9koZNP87vBCld9p5JPavwJNgEIOyXUlPYM0HmmWpVl2kCQ1TkG/uWFJF7nDqgMhUipnifQbtB2AlUe5fUG8TkLOqGc+WQOd1rwwpUo2J89ivPxtex3/p62/xUOZ5sEq0XLz3mcoCjCiHnlHXKXLMcYdYE6axFy9usq6fj65xamw0TCWprPxNxqgsQj5Upa0SG95h9yfOUvvKWHct9VJEyguUFtK3sQd1JCGHr2JA3eDgOqkp+Vdh6J8dMF7N8Ce8NABU0dzrumxGGH3WUPGzIxzIf/gyem0ktyZFN9P0iAYSc58YG4v0CbQU7pP78n/qUJNUG8p+monWeGk69p6kALuk9jl+PWeNoNVv3Nw8d66n+D+cxxoO3V45xkDHJoDYsZbkivG0gqhYsbWOjpbbBc+m3pkpsdsMuGcy/Bn2EyOzGqk8lpdq2GpBbT1eVUbm6JfVRnRWIWmI8CpofbgDaWM//c28pTVDeHAubPrYNYysYT3gFO4qQkq3JXl27/EijifqGXjbieC5HY8UbJAoeJ8IAo1GHcigY9GEKBhD5sastE31qEXlk5IphzJ4YrHXTu5vzpAn663zWeWpRWgWm+nEH9f22DgpzdhHgczqeS9FwCBRTwmy8+lxr9TAyvh4ZFlcd3FB/78NjzdB9Nqjtwm0gS8kBdszN8stlqKG/EQfAt94OyTh+N56d39IB2yGLNSGHhhYAqWBmdZbQFdEfpVXpRR5ixfkdBNbU8JwtHSgywlVbLCA3fd6L9UZVmY4HOZ8FxcyfAgJ3Px53ix31BPamrFKbDPhIRW36JmLKzIcFWeSXoCkLUsmG7ydvgSuOHyXJx9Qlf58M9P/xbE1THxZ1iyqXZ8QR62aLWtCiQ4b5LhA2ONLSCm//UDTFrwHvFlj6N/pFAmjUSbQyeXT8x1EH/bmi7tnuJ5FRD+7U/2o/JHMqehzYwiSB+NfoyQ4Ay4EGLVIk/f4bhHMyGNNqRXIshRcdEPDU8jGodHoXJVC3M2xghfCYz9TpBxOpZ+I0IgI0lfH9D6OxC75RP6d2tUE1v2ZKoWx/XFwLi/FU/RIGra+X5Oe7tcNVezU6tmLs9/le1obPFk1KzieC5dXtoPk9+5xUyfqDbPS8O4RcA+RaPocVP4aYHEyiCDkb/Z55+pIbkMah5X0V+kfEbM/F66EdVLjJ0aX6yZHn6Kxb1d/FmnJUE1f4kn6cypfSfLf0L95gxXJ1YhwKsaBoAR/HtsPBEHZQTRpjgUgEDrmjyQX9f85eSnk2Ze9Qz8aO9G0RC/rKAGEmYtRHLVclP84KRO2+G2EOWtfL0m3XjWP2KYVrZDzM31AxrOL/6W8NIif9ZvldpjqgJpSmRzpPihP8z6Pf2vnQ896D0i1NMPRyzbR4bnDplix1a8Mf9IUfl7gf0mT9MUo3wWkTk2yUs9taOv6l8v19qlbjrA1twh4COjVu7IkVNv+RJhOi7YMWVkLLpuHNk9fR73zZVkLwrVNfeF/XfhnDUO9+gdqLt9m9Sp8J3d+5mM+tisX3l+bJ6ZucPw733pF5shBuh4KikaOjhtC/9U1xAnUQJ5N7fGzsn/PvTA/Q3cekSv8OS9CkQHL1tzyJs8QW7n/JckfcHFRnl4Lf7a5TUnxzXAZSYXX/6GQOTxeWu1itZENx2P5D9JbWIL0QufTlKk3Siy2TQ9h20shf+vVWzsnHFMnqs22sLJk3rivyUgnmMmbpjqkU3ML+ILn9ANZkrtH4mb8CiE5IOsSegQQIjlZ7ywAW0zXHHeCZOEtO5EJUPb9hJyvTSTl6LD142IasvFmpaHn7YtfgEj2H378DZwIj6eaOeEgk61v+kM+Q0W01qZq7nxG0oDv3gFwpOpc9EhNu1FD9ay0qBu6be8qjCYQxoxODt+eA6J5TtscE9NQifwPwP+6g764BGOaEQfXzs3BP3H60xdAguCPjTW4WU4P+VOEmJqbUN3SHdkF/P5HnmGuVsywMEcxe80SjuybLbzy+ETX1E1Ba5y2bSlpy/h7E7J7s1QDrsAAb0eu5fJQdnzCyqA4oBPnmo6rMaYKyVhGyk4LoSVvuArtfz0/th1iP0FpoCW5glZS+vmgqHf3LDWzDTd0BZzndL0lZw65kLA+VfOOFqvyNXlada9tv+/pLPiWk6DmrK2W1mElUvPoH1QvTcTBh1SkaeAqH6J1R1GRfMBR6czI4etmlKD7ZUr9wMys7wT39SRHg3iO6EGTFAKAubDY/7U60kmAMiWEV+XIl6Zo8my50eIC2MhHapGdQVuYv2MJ4SNJCgWXDE/FQ0i9bIZeWwUXVH3vaJrhnOVtfEhl9cuvG1KRVttIH+mFeOM5+UZ03vCAFSJ8td1JLt2v6iHmHLBkKeT5Y3WzQSXv+Rtmcd+ENatecXhO1/jSso+pCp8fiCM2RNKB4JRv+IevalVz7eJW10v9yaZ3bU2vbQde+g2MvgCW7JEBJMD8faB0/brDd7Hr01Wp9HBZfoqj8k9HHv991G/Cj4OxZJ7EmpvrYRxQEeCpc4PKUKbg9dd+LHTXLkkaQCFSl3wi0/zv47mMQ+n3u0536yDdSf7dnd3vC0yaLbcdNikLN+oDwHxOMj4mj4Wy78ByWUGjHL4cNnjnENccvoRCw5m13F8ZFTnjnVaw261BRwLF0ONICSBajmw/9t5veQ/5lxZojw84vB/BdtAjRSFA2PxwZxgTjBeYqf/LKRcPIdYnmQZ+Dm1N47DXPd5/pjhXy/nrk9roFtqjLpB7Sziro63ZmytCBKwRs1cvDAJx9DVx+pvhYrCMqtXt3W0489wD0cBZ0VExUjKvv/TwljHz/rX/lWh/3iaw8oLUJEQdHekLRJqOrwOEP5lBL16VpPmv9EFvE2Tw04TP9sMdBfxjU6lAt6HYmSaUhdI9Bm0baXIBYs0SVJK/SkuRtriGB30hdwkebw5sqGvzMGXg9Jf5Q5pp91q2VrOU2zaXCmKbFu59l1Rqq06aPplQ5d7CqDOyV7p0m5e7l5j7jox12D6lEUjHzvnDutUgKDBi3lqWFGRzH+8RsCusmQkFTjeZwrDYMmVgW7SwBhWgeYRTGmd0Cos6kU5ebUngHrPGS8iS24V69oKRFnSRIMESn2hPSfIr8pI453YPiyZtWh7I76Bo1PLTyVZh/r9d1+PNLCWJa9tr9jqRCrLrHW4ZUtWyr2imW4NDAuYD7U4rXAtsie5BFoP08NvuFkz7dRzhcgu5usVehfWdycghZ0XHqT5ca11yjlYAhyZ1vz0L6btQVtzWJRn63ydkG2XzrCIJ3RooPdmUzfcCE+dH2aUpqPdmKwNDgsHzSPUwF16n/KPhUfIG656lDQ5MCFpxuEqgh49CV6vkVYBOeKpoc6Iw8PgSbJmYV7VzEs50YiE++WJ15Rau+IvRPcI8/onkYvvzU/Bd/XVLbLpdQeZioj7nm9AoQ+0oXdaZmyClGyB2P9+YuCfFKPvTy2yVL06tbYs4XE9SyPv1auCqZx8pr/8Ibw3KK2Rp/ogagpCDzLxmmUFt1D9KyqATtcD5JZ56GFLQT0lzZ8QtcL/CfaxXLe8RY6LXwlY7OBdc4PFHLcAYlhTigFs8Hq33uIf1lM2TaHVfh1L3ewPCPOvVLNAkwqhRQuXv9mnXYYe+pqhSimbjR6VhiKfkZJ27ymRNRBy1RqvHPPf4suYWdWulSzri6wlXEFMz8Zef7GLyxDl4VNd91jm8+lnSRbpH4mRJVQTk7D+6yBVorDGjrC1kQ2DUI8jHxMQ/ZhNUUTZMp1CFNcdap9rlGaswHwJda6JVhphDn9dRWUBK1vRYZfVD+HiUjdcqBadynOiUuT56kLf2yFZ3l3napmL/M1UhYe6wImjNuQQ/hTfPnfjOTuO6VA+o+WR2skF/317eyY3Moz301qsixnnk69MjvPfXZ9on1hf8voN78EgiSljtL8v+D+cyeb7/CkfT2ieK3w0lUX9/pj4aDhvNVaGFh1t0ovY385wjjblfjsKjK5E1DDO3je4SpFnKAXD60zriII7N5vZZAbGSvxdu2/L/9xFjNEZjiVagoGoOjR/n+Duv2EArM/2lEcdvpMhlbpRHfq/VSAgds5X/cA1WPCmVipxqZUX3CJlvPb+O3Fmee0jz5Q/fRqQT/MSQ5s325seruLnT6tNu7FLtk4N8ibJGJI9yLVYPl94HhJshzAjIrZwnrMoPd1c7lj1pwCSIQBJ7xjG+TZxbr3jxZRf9xEhZv32nQdDW2NWJMm3SF77AmfgSZWBERk4bReKCZ1AeStMRoMgNQwXxb2oP0NhBk3oJHd3LQJ+PX0wGGfUJXD3NB0XCiISx4mLx3watzJz+oCE3M2Hm5rTTSZGXHOp9zC1UI1xMVeuuyJChov7AaWSUQ9/eVTuQKB+eL9EbZ2O2+kV1YHWt+fGacnmOLQ6ta8sKnOYOO4RxnLf1LMHiEiseM7InI5VIZ83aJ14iWlEsXx+vgoDTVZ4C07OHv/MxKiCnThwW+x7vrAtTbEy/7F33oS+k89nqeWir8+jleti0VP36b+2V+Jv46pu+EYzChjsszUOGM+KS/47W/s9PhK4AbnjN9dMd8rhKxbOWQXmf9Qe5NEHrpFu4mPDGa+GLD3DFKM0QM27KAOvQWEGV9674CxAI/Ys1h55mblO5HRq5u5pABH4QwGBaFCavYcrKaNIwWpenfaKttHevsO4j0nceDwwIFYYdxf/uW2JU7p2K+KvY+mDSVImxwXxI6bw0f9Rs+4TKV/a+PUeHzelQd1aYKY9/CoUn6+/Qstdk1RvbmT2t7dW40v69hN9PnmOoXr+h4WTyyyxkRI7jMfmqRuzaagsfa5f9FQYdboGC64OPGbCap6T9FmFey49G26NptJ368XzMDMXvLkgUIDI6uD68pXl56nEshOBR2Tw0Gv4ohM9eo+pc9sNL8gv5ngiIkNBSJS2QhJ/vmaSP6h7niJMSYwz/1P/8GApJzbPl9S/N8p0UKY8dEtpGIdGu6w5j36ZG6HP4omj6sU6KGHReFCMhs0gR0uvbq1+9h7O17tn745xYXcMf/oq9QO1/BQJ+2nLpZ7BJ0eFGsNNdezpbffYr70S33RWGVonmJqazYKOWTBH2OYcZT1BDip8E2Heq2hDAF/8XALo+7W+FBk1+9J4USVsjwjI2gSTlt0ffMDvPQSUhK0aJFeVjN8zE57V6uMVIytNh2nm+ONtnuvvqpQtTPP4YltCi047mZoZ5ltP9iGRU4sUH4NOzcaAwsSXjix9o0czARxk1pi4zXK8CF9BIUcrUxxeFLKAdTNioCmZHkRaT5+VJAJI73psmPRUmMREhn/Vab6q/dWR3R4uTNDM2S5vStrCMIi7dFieMGq+meCjJqgidGwiE4vykzeD/CuFC13sRyTSCuRH/UcJShnzkPadlm/R2qUk7aa5Hf3gzSGm6u+Fuock+jvhV+7s8VQV9T0Xaw6mSGNEQ6NA+H7bTOuB1ki891ut38pI9f0cDbcguZyrROSt+/Qk4fWv8fM/B7Zmws3RXR8bfzdHRgw4llozTDFmC8xkEovLKSA3E8GwxzidB0KWBba+T/zBjOEfTRqRVHS1d31expYczVhBa7+jDfq0FOOB2VtoShTWO4VTc8EvyBT1Cuxg51auUVI3QoT+t6ImTqxVqUvyadQUcHWiT+SxhmXFBEJh5dt0elHkDgg7XZqcfO1r5hY3qbyrPMgWhy5FKs+lb3mGtexr1nnipetiJ/srYp7ya5YgIDmHQeiAk5/tAWuKn5Tlgea4F4nTfoj4lzfv9sF5q+xUyE02GGRX86weEN0krxexVNBBZgDtXAAu1BZrTehV9es/7aw+MCS/Tt4gH9dXnulvbIboH9v50hYUIHdyZ5I+oxMC7oMxhpdO7aK7xUB6rQhVHmyNREm/aooQ3klH8+00IduCO4v3r6Iv+pQWM0bWmwOm6IFZ0lih81n0lvuHkDU5UjvznDsdpdzj84j+Y7wqwpA/7wPBz6iIqLu5Ka2oggGVQ7rcXe7MSA/bFHWem5hIGbRkS2rvwz6opAtHqB8zza4VNH3mdJPtWOZeE95o7BQsI634HoeVBoqsohA4Lifu0UFroPRdWSodIuHJ8kfZGeu32fFTJLYIYFjIz7B3X+M53sjWt3dZzug6xCvx7QdN/hnGl471TTb9oDiga/xW2eB0k+liCLCEuQ06lLbFcRq4zdA9q/ax4F95dc6wNYkLsWo1xnd7831iFUJQn9Xc8ee451tqOjyndcxKbVemQaHPK5/xbxfeWMzEuDYX//OjG6VyHcPF+V0jctHiSX2eiF0aIyJ7WYoEdn+nrg73ke0JeoRjnw7or072619jCDmp5Sk5SHff/1ipFaQgFGxCiJ5n2/55MT4VEdls6Rhw0P7Zn49YD65Gxgl6/YOma9S/WVbENytxX5lg9TgBJUdwPn545G/UktDvy04exLtXGP1Ou4IyrdgP7uHFgNyxAWxMj71FMHF6H507fHHwWFGgrP/ArCKdAW1Oge2EyiSy7byPffkAiPijSmUF+nf4mAkQUiHZ3k3GWnQ11tUlcN1tMtdZOHhrtB/TNhdvlIjkm2kLPzx8+ZpQyaKzn1bHHKpzoDttviX6aalnFD2c3HOeHtnc52aCn/24tWU872mPDOuuGTduamveXO21tlB4Eh8g4hQfYbduyKrJ6tx0uxS4ptTY3/+f+og3ZcViSbzcRslc77zltovn4NWp9a4/Cd0aUK+nrhz/dbnoELvpPFiBRYUPc9ruzNCK/yQ6ORpVkovyW7AkS2tOSzgkfRabVMKFeShZ9KrMwd2uL35SBX/ILqfshUNx71WvSANJNqF+pO9seRK+on5dilh3By02hDVKU2z9jqwdh7qTUqAEgZ1mQnCy119vjytxxGphm5+48gJsCxSLcUvukTNdGyXFbPPSisgIIHy9ObvpnRgfC9jsus8GDwk+sdKcdoiALTRC6rKh7P8zWTKM1VC9vJSlp8j2hux8CzOzbmzu2G7bar0G521pIA/OSMRHb378eSJsTWEU4mPc/KLSx0b4H1KLojzDDo9ZK9mvM+zOSNMM5+BsaE+xw+ghzaCWi0ilC46RvyUIHk0KPhX+jF/aoRoiY4QT1CfHMFpz8AHL++ykxMSYEvRDJPAGEo6nW09M3snfUeOCf6qQw7KEtKZBM0v5e+ZBxIwdTf0heVsqaDb6EwgMSRSHMwUkoEi+eNo76QyNPpv0lFV3a35u8o1HVLovpw05KrQWhP0ZtgxGtfy/31YnJ7rQuONgejZNsU1FOvCbd5qcXv2JVHPycP6J2fAAgURH97TAhWt5IusQAD7xFabxxfsCB7grZ5uferRSeCkSr7e/spV5Chr/a9p6WmuNgayj1r77+jVZbwo6JRiIIX5TnOnIpQsewjPwSSjUJLSgylYRvjdj/G9ioLfpBiLfMtCKmeT/bF83iuqhGs9kR1Z3TnilUX+Vh4rU/dV1HKdlneSkE+BWaQQyAUwNvxJyvnBoEfsNsQoi4IW8WDkoszj7IV78updiGrbbatuZJqMj9qVQS6uDr+6TxRQqh0b8p/mayAdzXNkggWiSFAgIypytmUBQm1yPL9QipVV9D+Vzvvk0JD+S2IewE+nVvcII47xPO0CVRPvSDr/cA6bH/QWclhUvd2YEAwJyzq1QQ7p3Inyi3wHXhyg81KAvhJGFufzM42PZG/5MaNwjVc16yxqxmqb4CW/vMQ++/+yWZyKFl9dvQ+lSxQc4cMfGwSh77QZhKCqrw9FqXLhr8p4B+uoNv3xq00icc7BWVzAGQQjzZ045DCsp2SJM98tr74UIZUmB/uci4wst6yO2dv6VL+c+aTfa/TDCHyhkZahUGqHtTbyZR9vG3gG843qYk1zWu91xaLxMQ/+HMFwHXmb/hkYZLuLLwEnCVbKR8jyGHIczk1rXzNKc+Rej0pTxvOO3Co0sRQaMSv6Bv7Kn/jMI07lww5u+zUwdK6bQ1tVhtR7UeRM+F+RvjtGVFx1UKQw34WbyNAvBMzC224J2uIovVPKztYHYpcjIF5zH+jZUeY/7n3E6I1GaRp0ROh990lU5D/NvP+K2rGzbgtkio5Py9Pus0z/kov/DIojziG4SOTiwqkUbgmLiLQ3XkTBiIa+kvAwhnIosO5sOMCC/KjfVAvqIvkdH0RyUNR8f+SABPtj16FaIN78mHYWoT6+UW858zYDGj2zmj4LxH8UajdsRshHppWAORAwFJFPDsfa4lINjt3D0iTgKm6Oi7OGzd5KKUlZd9u0ptBzzUXve4XALDJPNcYd39GfkXb/Rb/Z3QuGX98jl2uFQ0OCEV+QQuvP9+ir9NDfAVivNEWRTdyfxePWOy/1S5+cxTbiFmkIXFAwKGEQAgcVJe99dZWUy4C+1PbZC5c9R99Hz5KN+xCJ30wZ/0RLNlG8hDZQtT0GgpFB4XopVCfIfAxePlz9LDmyXJEnD6oze3NXCbzM/1LoLy6EBo22Sd4fHz8z9lJq3KK7KtnIMrh2S6rXAopMyP7hwxoOngcJT081VOSWKOt+M6LIW3NTKxyT3FiHDwEOFj2pzTm4FMvL3FR3d/UIz8qf+TJT32HD32sd9QsXCp9PZkBDoKtpHhMLQ6tf3j4OdFiiwn5TIC90IEE73JNm/d55fGLytqFeu5oTFixXdvqkTLRQWlrF9RIbyj6mP8gp98fSTwLXOQkugikyf8SAQfJ97eK0WuOUd/BDUllNi3Tf5n44uqubyhrnmPHnlzoNTfUabJ4cbRr63borg/zl9TVMoUqy+To01wyeSDmTgODSmn4g0jZLNQtOrFOWJlPvwIoGeOElK0H9jggj5U6Gi6nT5RacPY05gTqNNgaIKJVDgxx9eGt7lrbMCQC8pgmGnXJJhSswJYlFv0/taObzYCT19a4+mHO8YERfCZHWo2Qi328g0ifIUltSvQs8fZ6W1N7RVxl6knekp9j/aEqfUJ3Rpo84je556aX2KmtS6F5lvAeEX6PX5XrhYKiY0uNckvFs5rn6PLOu/bPX5chkBJqykUJw8Br4TOaOs4MjgKnteJf5MwslNifM5E0DFHvCgR2XLwML7Ch2sQP/4aepy0Upx64LZ2hSbrWIDoeJ2vfQYCL3WadOXI15lCJefZ+mbv2Q1vfJcoBpVMn8RuXnO97ipd3GFS9SvDaNx4z4b+SDfBP2+5ZhhtZDdpaVPn/NbCoarCAmihBmrTikWJTvXQ6PctHDp5NUDcx129exoCdRC4KvD4SEdawBcBTI84sh88CIy3jPVO1hko3c91O3rLcOgv7d4/cjzuwQW1iVTHpC/OzqR52yfxcNn2Tdo7GYW+ZXGBycvNhyZYM4+0DU3ZUL6ZTtOXwKK8px860D9naIv2A/WaG+1Nrrl4w/rXDfH5R66i5xSYE2uFASeC+w3oLWvyxq1o7IUgxVh2tR+k75c8hGv85k/u2CZdmhE6gRnrnahtK1//BYhRWKhHerrC0w7XzG/z8EdKGYYjV7/84KTM8VFo9hgeB356du5x5OFbwcdG0p8eLVvvp1YgZzuwUFHvMqedhnpsuT+0dd1V5cP5PYe6xLSv4Q34S2nbxDGIgDV1n6TS0YKWXqDubn0AkMNTwgnHA2ida92mbtlu/JaKGa/775SduWlz+X5hzqoMV26/QXPQ3UBLk3kT53Sm1tccUdky/TJ593KvHSiu88oWIjvkyNvbmOwkN0R4hSR5otNK/rG2AvjZnf2+dUfBcblFfjv0kUaI0sOjJYl4uGPBatieZq5cxJCGZRrxKWlVcnNrvDpHMvG9y1FFfF2RS5JQNGW3ePMnJMGv8lFZ2kHn8bidDUWVWHJ0NK6TWJVXhhVKnDzQmhaAYqY9l+hAvkn+iX8DnEhaH0k/jkdgw1tLdOPsaTs58omCV3d+xHlruLgGR1UojAUAp5q7y5JHTsTWnVtWnBFaPgVe0Q8TLR/nSgn49tZCkBiDbyc7mQ8nTedP0pV0pm41da5o+sEAYFHXupd0dGbRwoM28UHiv62ukHuN7HsXzZ1NBDkdK/5Gd88u+COnk1PaJ1xqtaOsRKsrDm6oYG43xwt7R+4FnGhK9/HCbJuP6rVzugwqt+tUD1dfvyJK+iSlO/T+Dr4pr+YpC96rfIG9sfN2mZePEiNHOjL47g0U/S1p9sqhe/G1XBJg4SZwXGBAcaD3aWBMzx7vNN4j3G5yZACHf0r0qv9lywAvHf7C8uzdi9GdVXESJn5UcopNlK5f1t6QoGssBtJVMmM4KpBBhAdLiHoeaFhf8/bCQMMrDism2q/U5ke0MivJqlmJlLBRWQETv9sIExCvbzWTFqmk0emhB6Yat3s3pG0BnzKZXKRJh89tIlEHvfXyJKJB4/avgu7JtZHrjhiuScc2/AuD0fiDQ2ExMpinARYSkedXmqtP3Fpg4mk6uyZlSZNhfcEx7HbvnzLvA5ractH3P5TE+DvJdCvhhrmP80545pXSMJI790SKDk03GXu9jAZL7N+73NVmRMnW1PMhIGwgCx+QrlwscnkMEyhO6ja+PxhydYRLfMhI0PfCxHVoyt9JEYnEP093+njgkPb3g+qe7ipuKz6zPrOG6Kmdv01PnDINuCnHMdz+uLlWO82uHdxHwPXpmgZ5WNvntxaCvwcmdOCPAreVzZ59n9ExuGwXqC83uPlwtvw8wcUj6k4VvX6EKs7jzjibjL1B7Z/50Wuz5wdrusoSMg2T/MyKmQ7v9bWc56Tsr4zkPjtFHIJSDb2jIAF+ddEjkx7qw7p/qUxMt7e0aBG2/0p5xa+QaV9SnJzZ412PXMYr8QLbxrh3BcR3rAwu+4eo2Q9Gv3tuiG0Q8sWop3xyXK9rruj24l1ewzHct9WA2d+Y6N+345APRdrGDOeaCSNJiYBFYVdWUDRKLQq1fFLbt8eQYbx1MkPzaW/IQmBMrDr+8bf2IpHkVR7ogQQ0D2Y48xJA5POno6PXzo0E8FKEkimFdxqfrZq/HjIHHF4yIlhw/tCxEwkqZdpfhE4K4EYSdLoFBt9p9D/7nSMRn2E++GDZ65tjL7GrP1JdkF5WjHzzvJt39o0rnjs0HQBrkfxZrXdDpA+1siTANWg8uGpeOnvMPrOn/VTCq0hSpVCoaaRrxLhkw1Wttuvd80zq1tUYiue7jcatNsvcIq8EcdLEfA4DnGtee9yogB7b6vZMdHGIbts+8Zdw3PjYMsqzVqx0MOS9y2sJUj1KNBfQPZHqfJHSz3OVfFNyYjXwGT1I9ElMfiyU0Qin2Vs1wTfgI+XAtu5BFT4emozCXN8JqIeHAYi5MhU1iUWnv4L36Qq5Le2wk5sCM/gmelGWdDjKTTG6CmqzmDu0GNGp48cBeoB0tz5WoPQHUx8Q/AqY9rl0EJU11NLnyy7aGpZJuAew+u262zueah80HiKmOn8iXT4YWfFQxl/WBH2/lGatAX9kM/z2v3GYF3PeYqrASP1/AC2Zl4qXM7Dz3/LHJ3GiKdiXU6Zfv/8qL3j/sjoWeDM4O7vOz8YnUOQo7CbRd5ZBv0btOY60yjnBzgzH5vrYq2mqeVYof79tx6aku6g5OtHMVm0M1bktJxhk0v7U8AIC8rhlYzHPtFDOEgHJM61p4q6YZoQnSCC9794emWmVcG5Zv+JxwVPf8aRB3MwnxC1F2DOAbfYKqO1aL71jYjHxKkjXqD5HQqjMu3fFQ7jQ+4fQJdDMFTInxf8iZdkAd0JbvdpnEMfvJMknL+iPOCzphR0nzzyduH+LMGRFADKa+M+oOOLoEVNfEOZPsnQ9n9vIMnszMK/mJr0haTzJtb+5fd8w0a5DSSS3JsdAK4012nUdNepwDfbcZqP8Vzl3KNFVKHR1Pi128dwOGFjstY8qv7e/p2jCZYopSmqd7s1Hsz7VpWB6pm4XtL2iYpNznXOGZQQ9xPHNnnGYPgzReOj1ZVt8SLmoLSGz6wp5Xpws+jAeM8ESWlQ8srRcECv/Nafi5M/9WU75EoOex+D9iYOH3Wy8bN5zy+VrPDT/rkp+fcJFgcjKkX9kPIxzjVFh0qDH6jAcQWjcLZsWrOCRA71tIbpHS2Nu9GC9sksMR9eYQttZNZh9RZg9mJk9gMzPeJl3RWz73NWH/TSrjvVzdQGYtI7mXZqvDfMv9Cu2yCAP48AtQDGxEoXp2ztKLY+MAzdWxCj7593Tf3helUiuTIpjTs+/8L00a8010e2y+y0Za9jNa2Upr3JEamCvpamdgW5RVh3fzPEN7aUtaLU/AuGMfaMa2etJi+eqbSyKCVvluYO6nmYyR9U2g4GvmJUiuth01qA9vP4QQfj7GJ1jJAN2LApDwCBElu95ZoV/WGhuaV8G4TQ1b4TfyRJqYGc2vuEHvQgSZQMlmhLqYuGv6wLcU3QnO9rYmzGAHB+Lqvos4x2LugCCs90TNsRUIyLc8yLo9Hb8u7ag6CLpZFRDrDg5GkQQNCKAo5pgwZbG4eBgu0Fwh93gzuKaj6+zcKJO3CtdNU/8ylc7XooWBlzfHyx4sdlXoBgJsXr1mmopwOJkwITtuktNQkXfIEpfXRxiXEkPaFbA9KVQTdhND5TRgxCpcW9voOTFyha/upyyFU1ygFfhTt2r6vetUze8by2MfDp3o8FsLfO90bhOlcVC4IQPTfr6zSqnBKTspFMwu5+Ucxu/Ugo2pCaYUvzW9Dpm8Q3gWe+ooTc/KQH1a/hfbcMJNs8jzSzM66MqXva8O4bTVH9aG+Nqn+73KGl1F4E8ybO4s8+TJcn8/av7frDzO8H08EhJsrYQyFda3CPRsMHdfl12etmZMlYxU3mw4klc6At235uasoA1OcoPhh4/x8tLZ2V51uY9QoyG6yoi3oq65xywJzWSV6PtYmojHE0hTrMxI3v3nDCtDZWb4Zj3WTwze8WYmop++NHItUT/bPkd0HLxMmlZ7YWnEk9LR5Y8uUqxzmZ6GdVd3fGwgP7IKQPl54+4jyWg2iLo6CKLSt4XuT8Yd4J+nrvGtU1byMamFYb7IUrSa97b9ezNC4j88ZAaWgA+598QgBQDAY03z0rFxCVpizXh2YwYcgCYlOKDsL4VpvfzxkBdtwzpBWu5hVr88zk9hMOdvwP+uC9vPrGAMQ0VaWkWQz4bF1OClQDLtQrzd9gkU630nPiHvDUXW/coGvVDyxMmkxWUI76MwJSd+FritWrPruYE6bopKbYPO/ENGS4AkDuQtLRn3ie42aAmjoK6qEUmpv3+wgKmpbjmcjtd4Ie5vtFzhoTo7L/7JCsXzXFuhKz4XPNxU6x6hC5xH+KqN//kraRs6A/LRIzc/MPt4dHw1y3HN6+CRn0W9tXQ3QHpOwnVFketqbxYdC5P84OGOrU/dT+aoPAUpO79wL2TJcYRhgW+tAVuTs1oE/MU/2tVMRE7Mvx0hxk6qzIRsznl3r57omTPw1GQqEyi8MXPq5KJQ4F6Rar/EZ09InnaQq5RztpUvtng3GsTeILIfIC5R38UVMdJMboT/KnuCoiRLnLfy6hA4f3ZlGN9UwJRcmRF4JegPsHZ8ZnCoAZ5wvjv5P5RS+bwu5V5ZUUV+Fzd8kq3xrlqp33gJBz64/OKGaCH4eb51wa1CPnvkDogjEPpE1/fLU/5KnfYzvsN7Osi/GWkGSKX9nFU1URCwQzufNJqmEGwmWzDXMTtC4hW25+M5w2bO42WRCzeLxVDn52Ul8qm9R5R2YgQkGzJwece/qFW1sWmoM+1iWvJVZ923nur5vgHl2nNxsu6nxl9P7FqN7kXCAmvSKruCnaMsZ8plf7IOGEc/qg3WYRxlaVGRDox0/mqaHaIR3/em45nxc8bmYN+uDKLKjlZXFfB7DxTsYQdUvhAP1gZ5L4w2lvGHOR/Gh+S69cICnOColqkcSBuYiK7KWFyO5zxHbxsqLsvhPS0N3nkyN7k4YP/kGq5vyYR6KqIhU2JmHpRDfuUKWvcqPZV4LrHNyybfwLy9Uyw/IROVRnFueKkKQZ6/S3D0RMuf1yebNDdtYJfFiFfosrmE8EitXOH5lxb9kLX190JFcJ0kVSX1Ee68nbcq2vhn4cfaAxGjeom1nc8LP+Hj+GDy4GfNLuj0GOeGreTXiQkSP98jZh8/tf05Yvev8h0QPMe4E+xFaNLpsWGgX9i0cOb1s4xB/7S5qPBvEtyonuVyCZ05Gh5Eum1pBYf107Zymhj0uf1ZaL80pCyTUMw7r7mn2mwTIuWcC+w5GF9VmlSOcdvxc3xV4XN7nNW9YHq+dtU5/Cf1V+CiWPEz0i/hkCRINxyUQTgbNodxvtJOh/J+8IwiruiXDG1I/fh4ghzn/+hH2z5yRIz9NcI5B5j3K5bPxCVzvSZPeaZgoenpPwtAnC6BnB0sCnEGIsq64iYDj08HtGZ7OuMO5rb8+aKRr500VcyedoJIf23yzDv1uud0ma1xgducyo6FOOiaBoS7L77fi5qyau1paOjS2Gn2ozWfXW1VU3gBOk+NL/T/e65tfZIACHAKxciYFulMxSFsV3C31/C2LFZ7JjAJ56P9yCV8DS+kxJ1I2+u2v/edHlsDLymVAYGGE4FXC2EvYLfsrlaACmcWM0U2ChuVv1h0pZYNNpTe8buwOWZ+tXFYSvknRFvXfncDtsfR/241QxLrWr721+/UL0b8gJ+hU8adq0+H0a6e027tlSuCsq00eZz8bZkfbHkdOiLkQwIrKxgaqIZ3eeXzZQSfivK5cDrpqRdxu6y4RljNWNXykyWdki+NjI+OuO5BZ8waa3Se2r0mdoZOjqAcEeU/SqwK8W/bfW6lAN8FOxvXgtNM8BcUw1RFMjdYo5ZiQUfVW/SFMWESr2tW2cj5H16mnbWBlYWfkP78XpJypqTWaIMqekYsSaxPBxjrAza0Xvi0+00ov9+UPdabhFHj5zguEph8P2Gty0g4QmfxcnKgfNcm8QUbjDXK/kV/LuOtwftX3mUVQcAAxWNvMt8GaiGanpHSW0rHOO4Dfvn1sB5wcgPiosab+dd3qifeuZW7KmxbZUuZd30NWkr9zUmqCUsJttpNcPcxpuIN+SNAvDlBasi7HCs+x38dzluamkMvEWReLXASt/xm/7siOfbjUD531T1TeyLUUfRi0Dq901q84qPW5fYSlXsgXLZN4j+z+LliKSiofWAHdoLGzEH9V+FJytriloefIPihv0gI6uXZ9m+Gme8lKaLF9tQgBeIc9Bihs5Yg25xoFgCmpsDlPFci9Kxi8Mtv98j9lQKMLRruqexLyMtdWqtbnfendgclWh2uf92KcPSnNvpemuQmyRR96dw+D1dX4f6hB+5lyEzV68un/Mc9Sb6KlBRBx3yS62OM7PJlJ5va/G26/xZkeg34W2TNJ6J1Ytq6eH2Y8evtRKCeejrTVPOSdP9e2LS/OkiRTPzMCf6/Gz9IQgDigr3+l4hzEVRcErSuf93gnfQQu5QfVQ17G50vSsFPk4w9zYF/zS9HYCXEbOc1v7g7gYEwyWLn3mhv5e+wN4sk6L0Ujoc54l9aVk8lcNJE1jigmwkUZSOTqsKbAC6vyNl2kxwB5f7UHRmid6LeXZ4x5kdnIvuo+k7FVz2EzU7d4P5dgcFXlZvKolkYPu4/NMpZmnAruyiv/40DXL6RBadI9RKHjllXsCHvOugjsfAq6eEhxX8Nj6bCyxD8b1jGZP53jrFkfeMq1v9mGIOCDgBQ8BGJ2C5UwLjlnY30KoPv8rHEpSIFjITi0EXePP6gmd2nnY9Cw3Z6MK4rwqManrig/uidCDU2PBpLE/VK/lt7hQXx9FfaxDRgFXqm5tfjMqKMDFXVvJHVa7U4vbXBM7VBKag0KrHvP6V5U6eLWBmC4+5c5L/sy+nP13KrcH1Rn8DnPapgd8VQdljNmGAP/2MQd/HjAta4QSggOb55PKh+kgfeaHB687uMjk3Yl8HsnjHRQfgxlS+L4s4dRFnFjd4beSMgj9d/mE9KOlsIeN4k/p2JUug76PPe+t8/2n5nav76fc+oQH5HK5h63dtD2ioUt1nPNcfwrcPnrrnXm2QVb4IcRbeKX/WpvLDOdtA8dagJxPso3xLQ+X+l3KTlCNiDbQmCKJxwz09EbV1eVH0km+FPeTFbxkmjf9vdbr7P0/MC8JHO9v91qSbwp45rJc3gL/Y/RxNQvoWexXOpdbyP30wtmOCkV7pTHNM42Yn2vQJTFwvfNtdy5G+sepvX+x2KTFop6vFNmoOond2vdjzPD4Wolptf17psY1qqX2XT8ru4A/tG0Gvmid3eq6KSpzVrbS1SbeQbI0t26iGhKT7VARb72Uto/qroS/cOXpDeHsjOi9wn6rMLaUtfv/K3Gn9xUdLaJgme8K/MV+xBgjTcSoB3p0gNa4ciHHPqBkFDhymGRxqVpQPqSam4MV+KF7pVQR8ZQ94WeLN5W09AsQsVrn6T0MnbC7Ui09nej51wiweFwPWJPP9cWOG3yA3yk27FLmp4inbetzbWn3subI53V01HVZyxjPyiwGvS/8WttiR9Z226INI29+vpqalfveTA1ylpgOo1rMyswcu1mbkHDAiz87Zcffycu7OZND5oOSwylzbO4LvHHX87gZuMOj71Seh0Mp/3k8CtaiH3n13Zq3xP7DC/+Zza/AM3caLjb/INtz3gfC0Iqo29zRDO8YlzOgsNrf6vfS7Qq/iOcvAuyxk6mFSbWpRdOmiMPinth0H88HUurYshzVx7zhNL7wF4ERtgLs0fB+gtCwbV2f+CNTu3c34M2X4H3ff2t2A1kLb96JyAgvWC01nnZRLYcZLrMZjDQmLuclqE6ZniOa6/Vc1GuzdBGK0ldRszSdZmisQ4RAx4qrn25KG0TgOs6RR6fuf0FdCps0KIHqIXKM2tLVUS22WicY0Vb24ZqOUZDSLYvo3nywULaiWXsa9nj9cPRQb37FYzFNx18srDzJ+0HblP8cbzUYLDbVHGa0nGa0QsJ0hNzZ5PvRpyV1rrHHZEmBQcjOg6j6RNsZrBaZdqtxz8WnbQilzKi15L7A1rbljastbHueqdVGko3e57gz9GrqvRfH8dEUsTskwc3WovWxipm6D58KHZMeb9fdUEzepWPNcT56YA7fQtdX2ZpeL7DsQvGIoUau+Naq+OI1IqWFhP2pJabc+aF2duE/JT5rbWqFKOsNc15Bjan795b9WijMTevY6uPzXpo6bNkZ0SMXD5irbN49P7yg/fe6ZEX6IMKDyG4ODcUOADaU7wknamcU59JllK/bg4AZwMRHnxr3HBujzNF7LTFhP3Z4vCrfLS0qKuH3jWAe892sreq7F4CCMOpgMtDATfXekGPP3CfeKNYD0CkDCGHf1P+hhzEm1FDCJrk8/J1urIDp39Fa6apY0rVeN4z9jk0jOanqdG6SgfRLad36N+QqRyrp4bPgS3yuzMBc4d9RAVNlF1hfn+3thsoe23o64logMl7ZYm9aQIssX0t2FhmLLKNNm5NS9vRWxcbQ6FDduEpJ+Iwp6ed5F6MKZf6HJk+FPd+sc874zgIxPetQGFsem0QfzMv99xr0UAPgpKJMNEFykqkg0u10l+Wz5n6gpXs7YuhSz236aedqIRxANcZJu6oHrgDBRwu+6tptKr/8ZcHBvJNW7fz+PWF8wbectD4QDV/UmWUyArmpEd0ZiBI+rtvb60p+cmxnJ5eiCMKNptAANPhUSq6SrpkG9JQfrRRe3Swj1D+4Z4HkmAnU+BWxwRdfKeI9/u58TZlBWAViPIwdgtfMtRvwo90xlMEIgJ6OmoeDU9hfbhwb/L9c8/YZIqJelYzsDphJvnnfV1aq3XZBvIrlcFf9zVD897t0m4QEZLXGcjLdRTdJCiy0eZayp5c1RN943jQf9mPWVBp0U4sPXLw0rbGlzL6EXj/sXNzRDc358KOpe9A4M0qwzCyFZPbQN1GkKmAdKhy4+11veTJCuVyxEBw2tai6Ge4bm/njt1O8OmPUd9IsA653wYislKdujtUcfaLrElqpRMzCRW9IwrrdDNE8cBzn5zqIX3Q+zRoN0K7ZLE6RXGzYbRRscDJ3wy+EPs9XIJCWKx+iCQOh7jGyxTkpr0o0B2mxzDIDVXOyR6kxn/8G8SwrNjwXvtQEHmQBShCihdfWkOXfCLbwk1V5JHAwZOd4dKcPrVG5P1CR4YtfKZ6n2QQtVBxX55VoHuyNOVjrCP/NXV2dDXY+QgKMUU6OFO347mvJqB3IpcyRwl+4S1CQbPZFHCP2/pr49kOl//39qyqVcky5yv1/yEcWEtXKXRDF3RYXEMsTcVku53+ZWrkvUR2KVO0MhjNpGl5XbKtYmGbu4zG2/qXPO7/snf7ye98fz8Xy/Lnt/cOA3NPKX8/q86eyi21WNjSrXty/BYa6Ij+JebvJRQcNDKuKhHtZ+RS5p2Vzn4Z5p8ZCmmY8qKyXIsZH1zs/r706AD38GBfSQzh3Ms6vXV2FuyVAXVLe6lRDdCNunGX7iC+hw6UmaMe3W8IZMQsIwnfHQOHP2IWI6f8uDTIrDZViW6yvnc/sKIwvZ8UNe+Uf756ayfv2HYGB2AqTEhZcfbAW2dJZXrctL0aKz1sNribY5snlGWNVg34jVN3rk0VvzTmJh3CMJnb81djdtoJvZ9MToXBLx0Cfzhm5Kol1+sny0e62GXY/f081Omx+d32x2N2uufr+jlyZmgbHCi8OLi5DgDsTblVfFUEbFQfvgc9ZsqbH9I6GCnAZ9sbFubhz4SzfXh7ORYM3vWol6FH+NLjEIF+1yriYn/ySagCLk9YZWbYCHPPq9POdTrHMi5AB/a/GVnSlAcSRjrixqDW/TWGw9mjAH2d0Yc6dvtXfhqrGfbSWOxa/r2uCO+3l5I79PDqX9bn7fhZlPzufl3iQyIuFzFzaXx6n5J54mgJ9yO/NBjRVQrYUrTaHNpo8dG3pOrB/XeZI/Tx692Hg9WFtLRs/rgZS9ZHXOqzuJy4KTW0JXg+bc3mc9Jbf66U3J62d+Tmd5De23r5aBjral+QbhGPPSGVBzcNMd8ViT1T/6AvgUw7GA8bQJlKQaK5S6Uh3qZRx3s9vtpzl6Wk21v1YrRGvOs+mfELti8vnCC103Ribi7ceLZru6QSxSIXh5fOEO6H32k4Epm+yE+4yTySwp87DL7GvX4hquPbntcrom6Cf+WPqro7B+n3dk0rwf6VYls/+2gjW2xpWvH/iWFNXXhrCpWqZDP6lpFu5tk8vOOwQhhC/u/KNaTiSgWNkjtCQhewZU1IcwFWbP569o6tBt+DrNzi3hChagJ9ja79haER7xdr/EmeP6+NXvjcRx+pbThfKnuLMer1l6yt5BPT4Ej5z0mWbH/E/5so6t6dzL+Z+bYuJ8tMjOP52flX5BE4jEvL66nPWK4EN8/vI/6lisCf5nKpYSoAWWYV5LnbqEY345tLV1cojcf5j4fnT9X7MpcYZvoixVa9q1moKJP+Oh1tPt0+cu+FCHNj7TFvOwYSQ/QCs5HRP46Ufn3scbb2Imx2uVbdstkALUCJHsGvDkx1C4yeD/T/sf93W+3dWazoSaJ/oBY/NS9AIbUtjXc2/UVyItEUmsXqF16i++B3gu5U/jz3ocRXVZLw/4jEXtitq/XMfyXjiITefmvlJgWFccoa3/OP5Ov9JMfZ0ybalWJtjpflRswho0HvOJ3XvYnSTwX5Gkvu+/Io9efcW8ps8bRbPrpGSWopTp6VatPCXUwm4oiXcUtYVitrdg9+EpiusBBp8Pfox2RxMcKo/QhNYEwnEahevy+RQ8m5EqIcPZgQjdOPmtiegUdAk08Ebsf6Tp5/khwNDFoYT8q8p03aHx5y/OR1wtq/3mkAEN5h2nfuNbxZj1zv2pvR6ivKT7JqROFGCljhNDdNmunZCkPtaD8HJTsSiCQxUTGIE8PvWFpQih0QiPzRxnw3Bfx7NvXILs/hux7YO8u53vuxzFmGnt6LSyRHQUhCp/NssdcxkqyZfMf8cXdJDEO43IYbWb/TyZG1+ArC8ddyiVGZzv1IXQ6n8yI8NpjFkfTfIFefGciHNt3qruyrKHx0ra9eru/x9wuu54n9mP8QvF2a+YStLNNHQJZhalAzkRx0sHCthXrucWgqfrf5hBxs2V2Q4zLw/rQvRl7Kb0KnEXGB98gZuaQ04ZxoROx4yF5Fpab2bLMjfQGVhWUaSzYgaaACJ+j+zVpf815xQ/TEox3FcRWsbnp6TuTB116epNyxKnaZtkz20ZV4e+TnTKTZhSWqe+nAuxZC3tOPVQGEpKtxpF3Ig7OWTAR1Q+RvlMrKQzNyMrvf1xzIW5szdXln1Yidwl5oMlQyrisD0h/PbfQqtRpwf17sg55XkI9rAJfGHquK/xLSghejB0YqlMZ8LvIHYuNscoAsrU0eIF4obMRNuzwIEQoixIXxZCUUMltgitjajjdplCSSUDq4m7DsLgrQNXkLkzpUXuH6jTrSunAqddSeGX/lvUjQECQfta51YPTGfK0uxZ1xRAUEjgy5+pUxbVEzDUwL0ItWKN6x1fY0Iw+sbfv463xcU9GmwTiX1pu97U7/XrrCAfLcxyfRoOUIgy/SWCW2faABJGcevWbX7Rkpz7+RFyX/46EHgEcH4n44lFKlyDeiQ3cD9rh45pr+nwSSepgRAM+LIy9g5BTv8H8dNsET/8IqbRRRQteL3PBKLHpNyW4S+5vSOJSrwpt0BTn3b9Ti4enBzXoXLdSfqGU1XwveYguf/hxGsLVKIk9ehQXH/tTZqDN4SiLbUpQL2jiSIMP9+bm0A87ktN6LR9KWI63Ha0oZ8v4Vjb1ywMew8DnMLsvGnFs/7qVCNcLldve9SW87j0w+vdRnIf/2fCC3GzrNIi1enjpO4TvtBbMuzTcyEykfIOFsQYn4m7wDKyNO3ql/p9TNrQ+iFJTrwDyXW0rXJz39VC5rXb4NEYh+fMCLkDvetBSqfBea/GYlxZtgFELre1mKcz7SgWff0IMtkE8wcPbj9RnQXcBr5paGXfmBO/0NUE7CTxF5SMLFxtU16CBJDaRPj5BHscr4UiGL7G5tG+aFXeiA5Hphwrg79SoyefF0v5niCnmL3+WNjJAqrkbIDNX2jzJE5ybFzaj78onb696+9YyE9vv1eaLefLT/i6IpJV6PeyMPqVOBjOPoqky/DJbGk2IT4hTP5oS1+/Ph31iLxZVHxzqbSaK5C7Jm1JQmxwxSu9hc7HHGtzZh3ygZDpSZEbvjF7EvSn66hTOf+h+9t++zYMyaecLz8+BQzjCqC6rIBlRY4n9S5V4FQ9FaajYDTmLzOIHJSI+NEc+qq7TJlaXYihOOCPT+1Z9DSnUCz9dpp/iJmr5/kuV8PDoO9dSdH49dUapnpybTrmcazYf025HTttKzlOdoxJYJ2u4KfL6dcWXgdhrCYwfhOahmGrhp+8gtSlv1X++BY+Ds5omTnYrV5XHnGv2yp/ZVFlOso1upZWkFVVlIpB+uOEf7cbfYPs2W341wY+rAF7ZGbAaZiQFXZZoeU4iiBzS95pq5SpDk+3zGK2l4Bh/H6uS6vNJN/zXfFT/ar19Sj2cRl/xsMtI27tgRMWv7CxGcbN5ujSiFvDgjsYo5QGyRm5/7O+ZZIOEbdrLbm/9pSsJ5whYiq6vGOIlwFVygYS2wkhtcgbPXm9dbmigHtZpbIp7vqGvtA4X3BZLY2S7UxoG5rKffVlFUqcZNI2YgnH94KX5XYf+z9rB95UcGwbiJnsagHBwxxMRU2zlXj5LJOrMa8Ts09MSV0T1YP4hfbMVTSUypbcJN9KnIrWKkopVTiLT2Galwbjrse8FIq1SsrHs7uu48I4exGA3jt7/oeMd25COWzLVgS38YgFvB5FAHtpoLYUr55/nYiIN4VSEV9PlHWWDVTIusO7HJoFWYbyZAsfYJlGcoh07xz4HHAz+hVYhmPfsPB7fsOw/pufDahWEvh3zr8dmRPRGCpgK2GTtg+spXwkOH71nGTk/lDfnWUaESEKLygRmvoHsOPtbkTj4psrtwpnpYQX4tomePzSQ/xcviZADE8RMnVabv4IhBKb4k5mX1iQfrxBpgns2W3wfwKLOnmXVSkMbQ2FkF+4R6xEyttsiVHJ/SV9elLmmgoPi6eJLZ7wMP26/vWfD6f8TvjKRvsSSzta2WcX3z8WMoUSB4a7hnfO4LynyKHqzcc/hQN2/geNGmECQefdb+pX4/x7pPu+ukbUVc6ZMF3zjTWlHW/KFAfe5E3wrYn3cavrQ0fKj1s4+fbey1fJMMbLicaSVMPNHk5ISHLQfOz6FMUoR9bXxC3J7f7nf4p/PPn0fGIYjknR/SbYj9wTe2ejtOMNWzXkqdVXfWhPdzMwoTOl1Y3ooAehHZzgs6djsN4M8nwi0t5B2hsC00ARpieiS779AvFKdTjz/1UaMO8FQEv6Xs/QcI/7ACR+I6C6XK886OhVkH7hVPjrcCY5NKEgiR/Lhzep8S1J3bSmT5Rqs+u4r188/pyGUFKmT88wR57RNiaQJzIvmA8I/CdNCAIAZ1ABPGQP3xhYuUBZ7Q+nC4lyL4hnhxL6S1ozqfFNZreKVGj8yu924qpUpzPbW9kWrXFxDQDIwg1c9fdbD7/hv98ajjuQufPAX0WDKDtynpeG4oaORRtQvgu1uxFEZwJLtEQtScgDL4gK5+UlILSjzBDLRQdlIdPsvbwH8DrmZw0+DBcwMIz5wFQMW/C2+zUYRXOUQtqtL/f6r56meNBYC0A151w+5QBWqixQuO1I4dy88qgZc3wy//ntBFbrcmAm+Ui5YGznYJce7WphVYRggsXVQ9Wy1JvTjhKyF80DIQq6WD3PlVv1L5D7qMenAf/BWhpfYVLQTVl4+ZX5/dN10HKNHi/6IAhKbFs/6bTcP5fCq2B+1ly5W11MPoUsZWXWfO2cLGQfcyhva9+sZl4LWAjBicSSfs/r0n1mKk8H7wPp561EKItd+uuNj20JogBbCd2vOLmx9/21t2DSB4ktr870JaTbmjkwWzVHiQXzoP6SNz5F0AbBzgn71N8lOmyVTPLbsg5iy56YLGnNPOrxIitJjgtir8ntv6T0fEuz3h9nnNGSvbBVwXw2rU2/xZq5xbhPkGESNc13LON9PkRo6R+EbXB3STOm6mXm4Q4YDxLixslsiMJ13NDqm/wMoXXik7OYUv31jwlWxXJZ+ntw9/8bwaiw8coE0VM7QPiYuQKe85Vina/jVkPsmblQ+MlsFZodZepYbuBNGmO+LhN6mXexqoIa97TGw7yFrEH2mGhz2Dg1dFCZvm6Twy5Xpo/LfY0mm5MNGNzMGIm/qaxYNiMX6g2QAkbDFKzbiuElzPY7MBnmZBie64b3HPKf1kve70h6OpxAHrSwP9sayzDmMxKeY75Av9fy/HkFSCAIXHislNVsi2zLE7EhcBELQX133RMsxP9qn6lHCyrakaN4TBfCeyq06uZACLXjE0JiPyEEQzw+ZUqFoLZC+AMEX3+u+kTnJFbHlJcRmFxxBXdwIjtPFOBhwUdKBTVsQ5/Nu/nf+1PB53tm7OurNlJZ+kN5+TQtp/PyVfw5xXWjXX5QKuoS8K9UuNipYmZC7mTFBYa0XfMAJsQ4ev4HQbor3LWU7LAgZUVakHxEG5ApXnw3r0socHN/jsgwiU5WCBM21W/4/HlMH5s6NRVjiItYwp1anjVmTNRj2OutD1n/MvsfdZ9ClLHSbLkO8HU2fNyh8DmPkBSYiB1+U2sK+ZsQmEd9cvNOAKk90So0tc9hVRvjMZMjbF1IS2A4zX71mCSnZSfQ5+qa0rQeth/ud0XY1CGyQIV+0grDbYqsltNHTY2NUQT4gwfTzLfzy8fn/dC1JBjP3XchOT86o2W/qd+lGL+wOOjUB/82DMYjCEedWV2BO+qJ+37auw/wnyICVP3zXsvGee0g1mVDYdqR3n/a99L1+jvl/Blos/+wqHzq2WnXOnLqxLjPiM4RCDaf9i2MijPyCpzWe3TrAbPQIwBEq5/f7bzrIPaH3yV8YnWTk7HZ7KRZLnz/kgx8PBYB9p6k6PYQKdgCMs6tZ8Vn7HZl5l31v82odCcJGKym/M6wknePlcHUput233O7SPLwLkrH+F1RzoYExsBbPK5RmDSZrLMhBSUDbbyPMQG9xEeluqip0zNmNsAy5Fa5ENIIhM0n4zybx3wo80dy9IlY6e+hjaoJjiJ4kFj5X0d3vZULPQs4JLSfcoEf0up3kgZXtShaWvsuE6UvU0U4ytOuk0i5FzBf5dBmpvbHdlxxBQbqgUosYGrPzFuR2tYTDudGEJw0A64irz65JjjlRBqmRsEK6iYNX8+rYRacNfou2GHPjfx16iBorBBQJcEf+x4OIUaPM6a2sgZr9Ojas+OOrcMtWWCwySVK8vn6nAGZkuK8XleukKkD516/l//7/ZzPyrQN78ChzbT3XZ/Y5hY1L/rGC+HrnTJ2jU9fi0mXtyWq/KeRG102sOmQur0LFehJs/tCOOHbwuQdgo02zivXWmVhYIbfRdYm88WUCbnfrq/0KuM6zs78ahNZk5rO1FtQWb8GAb+Wikws00+9UVSSoEOLi7fsHERHJOi/dbvlMe7DiuhA+5b9+JuiEhGNagK2AjGs4+VandJXgdTg6TqY76Ue16tepJYUDPtApLwOwZWRcXtT4do81igN03CTYnXQfjYUZ0B/egBWCdrPUbHik4clqUBwfVWIO65Jud7fV/traI8PY6lZ6uuzqjN/R/ZTF/ZFNKoIBAFjbrSckzAei5Hu09tfoyf1yNU58PKkLorQ0OrEn5CXCgXWaVHvyCWLq2wWgI8pXX0xhq0rEhCw3TLyxaApmGYm7bsycQQZNowowG0dUfdWannr3X3U4Puv2JfeKSThmWcfVP/GyT9rWQVgR1jRfOq8dqF/m06PUcKMb8pE+t7PKLq0bp1UrjBudon39MGiJ/Xqk59rtLDm1NsR0HVGIYa91SYFzoB3eauSNoGZEHL9vGmhb9zOfcWLuox71yiM+ZOOa5GwAYH9fwSdzmpWAWj13Mn/YEUiGk7tYQyfbU3v0KNzlcd1LEnJB7Br8kAn5Za3fB5QdBIVBu1oG7V4w7c/ShoCtj+q/OJf9juGkzvKN0wZOqJDRRh7jNepm9l556r8VGN13gqlFCedzryr+0dUlZy/2KlDvQ3PK9Rc3slwaJnGZ+IefW1BletLdZ4Flt3j9mmu0xi/EMqvGXsYcfHAhGNXMXxGJ7USkBu5n5Orbja8EWYzOh/GXluCf9UY5p6Q9iV3DiJgt0QOQ0iHf7z+yz4Ufwbp78iZuSnYWcb8bEg7Oud0CHuaUDDj4+Z+vc3BBCu8xacGpxZk7mL8vqnQXSWBZTrThjNNN2VXGqhLNRjxJmBCjcps87/QQStguWR5xxzMYJ3wg7EsRhqP9G99H6z80+Tbn4/GpwZH3ICKVianLB/o0L0f/VQbcTvEM6Dr0j0hvL4Y6bbwldX9ksvvW3j4j6VvzG1JCN4HS1IHvivCkpQtBem2AW6G5EaWRXV+lFp2VP4ZL3k5M544WgbrCSBNardPEbCXa82eGIjfN6H/lfZO6SfAyCCGe6z+3IoMpHtckuNT+PpnKibi3mYof1Zcz7idANb74eXfY4hdzwRjjb4fZeB2mWb70JjzoboQsA9wU2DIpr8kNPEhTr68NaxNiGujTPNzcRtO9CC1PLhpHM0vLE1WeSCeG5tnId33/ZvotlhSo5Xc/BmAC7AeXqHMj9ovcAq9XeZa3VGYxB3kSIxrmO/uTZt+pPqKwgFsCSK3pq3PUxVCS1t1n667M+VcVepHgRRiIhh5OBsPW49LPTJLPBffnIqEIOENdelyzbASYejHluGVjYbM/rmebjf5naDd/6lsgNSgh9suO2uHNa9gDW6uatll7rwyKrEhhSGmACFKp/o4Ii7yQ0fHfUaEVGzKh/U4PG9DhQ23nfvdfArY2RFvgWv0NPxapDOLLDCzRvTFFKwd1kQ+2UhnSVFdh2j53P7aF9hc0T2HLfug6SlY9PwxxEI61SAn4o/4HDGXrFtKtofa7fsPw3qOvaf2H14w85qJx1Vp2a+9VB7bKEeG4RjfJ47gBj96nzTzmyl8u3zCPhAxgc/fLEt45V5xGSfSNNlpPrqHQVWmP7YiefSIhy8jcmZMhJEnJvZ2FTE/nwND5YmViUXC2dAKB+6XGJ8pbmdCaOpqizINR72+IdvvdZ2h/Z9vlLaXlWxKJFRldEMvqBU51zfB22bsh6DoAvRC/KvTPWhj/b1I6MBhrP8kFJhQLjQnJi2PDRU1jRbgZTI/a4G9LCcKZvezDOvb54Dhue0t0NS+Bow4WlRbIy1jYEiA9cBQS9YlrHrjHryb+WwWe2Eqh3izy4x8One5hWrhnQD2Rovs9pJLEfhPcYmjqu4PuBCNfAXz2Yb4vYUY3lmgnu2QipVC3rnKRJQwlIS04r6OKZipU/55L4vPOLq/xEwTiVKQ6LgDjcd9ZWMSJxgACNSOZr8ZB8+93TGuoDF6RB9sMFUVjfMe11Oe9XZE9sdM/+TPXvc2PIYoWsYuR6v32I3s1Bfr+5sb8MbdEJc0ru7QcbSfbWKosGlyLdWUEeMq5981pmEaseptpy0au3vaFYsM6fHpQWzE3JHZz1mChwegVOjJoPUrbYyjaBiUpKNnR14MnZAp76hayUnY+sKHarJgF/0fN/jLJH0S/Z/kO+hIk/N/6OXtJxozANWmUhspjl/6xTF/+WwMNktqingM36G1un7S7UrJQDgPPB3F/Sm/47DlEOikZSUC3kTOaFE9LHrz5DTl7WayMn1jXStVmR6/fm0oqr+2nH3lJi7SS1QOF37pz8xw+8Hjzd0uToSm9Xa3IVi+pRTbXTAhak94RzdSB12iLReAe7YkNK3X0N9QQZSBUI7CCQH4Fvx6gvsVX8EyjciTpK8a2dM/X86YpZtiqxkt74rdiNHDiYhRC1+W3nhMQ0+L7ZtuG7kHAkHuJxwiXYal7GquRJ/6rWS2HdRpepfYIU62zhG/QD8Fg267V/+kPdA4TYqqMK2RI+7bihXZmLy5ElmPyjbwFdzUmn6fSBhGM19d91LdWIJzN8X21dDsvsa8i/YKrDBT77yL4ylLM37Wo321aiTu0JZGkw/D/E0K2YXquL5DYhyTf4x3OaiVJFSC0wXNj87Y3VLV5Fpo2fbssx4keFpWexfdzbAhRIXtOSljMRLg6npqkSd6/e5W5nfYbkCKydYKc3feq5GwOW1aQwLQZ+BByPEOA6BPRVzblXB0umm0E0171XL6PYEQ8KZCMthXx78LMqXiJG/MB7+ziImXyh9PhF7p7i4auD6NaFH7RWU1nZOILk7ZSuTHw7iXF3NXvnSJN6dUsWGPzqDLSQzXtfJoIc9Fz22stOLT7Ft8U8YO5YSi58+xlK/Y7BSElx+CZ+3y+nCtrqpxPzyrO3XmWvNMtsWI0gNA4j3erOpA2IOLB1KicehEBWr80FKhycSNnsmveVakpaZ4nZdWZYIcq1QLX6s3W+Mko1sBErub+1Wg8Icz1jrdRRPqbQ4sWBupB57QPUORKmDwbMurNpxYz2eCUxOJwyTm7xUz3uthVvRGGrOwPs6VVTzjiBd1Cyuy/HEZn4wWRKuxkA1f1sCes2xeKE88kTbR/Lmd1CgJL98P94VCnKJAAy+PHY+x6xnARqEt8SCL8b6IgoKTqrFHOymm2ZM63NqCWjXM7NCJLafDKQGq2Z5cy8pMcOi/wWf8iz7Y3i4lH9V3SNTzJ4zYjaF9SLLpH08R8hYwT3c0O7hIBXB4uBOl2gf9r7YnXd3Y1SZRjaR1570o5VlV7hUM3fdvCtgf3yr/WD7PTOkyCGnNKrWsjs+yPPxQ+xu2ZLGddaiA1aK2seTNXUtIHVoxm5vL1qwYCmdH4E/jpXTqSwfWwBPucDFIMkbFsUFpKKLB7FKPeVyh+4BCxzz0DiVu6LX0l6lQK/0w8OWETROqId6FO7FUmSE/J3Jo1fBDujB7B5rxIz1AaSZeAUTuv5BTeoY0Z0Nq+17v4zUtwwnau7kmEdkZg0E7q2YmDCJ6FYDdja/eJGn0fLBG4uAMdXCPwbQE/qGUfKWB5zHXY4SY4e6XpX4qUgTUlhf3JPk6d6HKc0u21r/elbVbLdv95eHtlxQiytH/YsAwu3a3riWk3n4Q0obV/MnEFcSz7XHZelngpNZUELH9KgMqy2gGoVo+QOcFHROKbReFGOLxaIjFCBtm1Bio7jfRHIcOb2x5mJAbl6VCK13KKpU9sUijadBWwfcfGAtDsqEEJfqSrMxdinvmypoEx7VJgrPwQyIycxKThNGw4O27432pumsGZ3SaFZDPPii1n+NgScK2ADetJTkUTxSDXG3+EGiOLkVeSW2TN1SiS0QKmaIJX5VoBZl2o1sdQ6byGh1n6QY9C0h3Hm/pQKdb1pwD1ewRremgG7ZRR1P2IGxKmfHoVttM7NeusLK8n4dhhDJxyzBXUoU0BGkN3BRs0x/mGheWYrGBoGya4Z3SM4N8IRxrGQ5Md7ZOHOJ39PRlQ+IYLTp8EKGL8lXfay8U689+ohKnHTI+p0mvNlCl2BA2gQn3hdbURt1b5VHbWXCGlNuYMr7rxu9lio3W8vq4ijCaYwaqhzURZGKnipXgBG6N0Boxkxy1GTu3o0vszIZnD60S+/zXqtfomd8gUGDXF1tU/ffyHZuqY08e3OjpneBsfkNK+G8vbWw7hf4VqArxC1susx3ChmNb9KQfCZ2+GtCWvQ+IR+RgirwyzwjF/mB1RY1cQ5gLxwZnfNUb3/EnkttvotKDeGqWo0uttQM3fNqmj4P0fbTgWxdy2RXD86J1YbOUoeXDkpy3LLZgYdWcmQ5ekV6cisajbaxI3Xcwf11z/92u4PPrwu1lBc5S6Q9sfviAHnTIrAfBGSKxbUstAIjT2Z+gCqcAofYtykISZvtK05IyPSqXH7cdECdxO2wmJmI9NLdRqfslwWBYF+LnL7x2WgGC1EkF+hhOSnFs6laSu48Igfj6TimO7LxpBPErBxhEI7zEBsNk123h8qr0AglOkvDaM1XJyL1A803BPz8qkXO9USDPmkRLezB+un7eZnPLy4FUVPUAE6JIl4gQijUXMhUjMa0OjzocgYijOdTPAjFhqC11X+PvTcVFVnaqECy6XxHYmch+VAPao3QQ2KmbCpyE1TRdlIq0jf1QGJmAS+x6icm+U6WSedxZTrXzsmDCo6ijHt8tx1OWr5+s0aUfEjK9IoeSf4w5MzrntJ0QDyMwTQ2Nd7ZO+K60mXodtqPstMMag5zcIJQjVtsn7Ovq5zAhkdwD3VEkmu0Z2lXphCMc90L3DwHXfIo8vWZVZmvPvm9TcvPIPL41YdynNLtmGJfxo8XiFd/+WIUOiFDxLpNdKpDhOm6Z4WLLBR6qS88a4id/FzNnGQ5bE4qtUvsscogZvQuSnGIMgjglVUEtTc4bW+06AAPtKR+cVudOHm0Wu+1QV3sXooxrFKB6I94+e7Ke2t7F8OeOL879ErPDxvlmOpNCVGajZCLjzsaSXEKKUjF++ny2O8hdsJxScf3oQVqQBJF/tad12He4fa5o7PNR48XSQK50v2bVTZlcNlTN8yryAnAz1GF0KeJB4PX6u1svB9efssAMjdn0Mt5T2163Qg/Z3YDbdBW8On3Zyqbzn9Tu9D6RNTfuJDJguczw32bUVqEKnehFM7SA6qFpvlTv5295O5LkVFOr5sDVFVUhgq46Bhh1XVr3P1OetIohAaIMx101IVilcws6c1wf7vv0yHqC7ssrlkWrqy7aRY6bC9/00XGq2sXi9vI5i6FODr5RQPMxE06MWmfjfn6R1qDDlekfrAigD8/puos1r8Fq2ozl4udrbUFRmz46a4gdAMWNGvmC1zwXxuPSJKKREopxtKn5AuFTvFeXMNGusSfwsCpdVA5CSx8dG/7N00S2sNBX7liK7hyva7bY0lAcA1QZdb8AJjjfxtig/cpmHhsg1E6RNmcmnEjdN3qQO5F5QYLuOt3ZJqitnGwMWA21laZGX77B0FG2bb+WvvEckUQuVHicP3Dssgxl6h4cBwQAbiopLj02R9X3LpxU4o8aoMA6YdmBWx6jXR/RMBmWbQBp/uCEbGpQhOyt+qyINzPn8BWZ5OH5QzajoO4m9FCFjxlWEkACDsqAut8mdezRE5OIBH/1ybdcGJB36jA6RSgyWXC16tRyG+GF9RTA5x9V+ryKYhmCId1EKc5TS5LfS+DmTnwcOpoKrJX5TUD/FIDL1/5rM6cOW/kXon8IAAhyPyr9NfbLx9IKFflUbnrKF9d8JYs3Vrn389hN6t7mfhrcoSSdMW0Kw9tqWZdxi1rae6axdaV39pzLUsTGIxkAIMWLBMvVfVaN6UZfWZjVSe3KVnOemairMj4OEpfiDMjZQSHIU8BNCwcST2fE4OPGF79DMO+l41H5ESVm0uMz8Fxg5wHeMn9mxEwchJDmW2WTEA8+zUuVKwTGS3VhY5IcaS1aTv4gMvmAqClu3gcfp24mm/bzCPchYbA+r5Q1ob08pMZjSbI/5K02ZNiQBACKYavPluv45EyfJUnGaDeeo+dmAIXXftw2qtZeA9fdz+kwe6BHzwZlqstwkPxJ+PFc2BBYE5m/WBXYq5qq7OZMoea9XyXz037Xd8857x7Z8Ar4D/v28oCYt3vqHzidY63IZq8+w7B/KXO1Nh5OXe3pnLZ4UWlO97aLFix7uxUcjHzCspKNtNoNUE3ywwsvTgOC90pxrlgPFCCPWA35QGAirpyT1UpVp+szH/OscyLjdNcS+NNujHVEfdjZHCMj5hAoUGNrSQCAgbRqpGHG0Vs5UWHcMyKdA+7Uif2ci74QeqYQil+iunRTlY5zV9aS9/HOKtEBt5MMLIFl4vnpP3K+vNVSpA2VetrHmkJHFjKU6YnoehRhhPo2Bv+yxo5VfuvtQXmnZG1TAEC1cI5aygLjDc/dsAu8Q7Oz5zmhr198mwO3IV0IP5ffYdUHzpCAjlIkH9HMilALsigxQNBNCDmqfDqXjXX5nUAw+LdSh/eqquSwo5N9eZribKxf/XX6aAiy8p19z8p+LOZxmhgAkEoVsCFt3yHmXLwCzdi+3Vy/L74CZiUZWRBZprqsF5xcHft95/baEvX7QDyTcxCnt3dv4NDlWXOVfrKKfPUJqPq8/vDHqYGkTsVUCqXZU2jNWo4/AikqbZxOKq19Qjz5cNrWtCIiZkfbuMuGedFAzjG+BTVpiVihVZvRW5HT9msd+bKZLRkhptsbY0YpGIott6cP6nPO9cfsr/KwyQkPgoKEJFm7v8FtQ7VMzbej6ekQvsnEGkTe3r9UNDC7IdxeUQWGlWW3xiYGFuMW3KlmMoJ86CQ9tmsXWaOM0mGH/hgAqTj8FPMUTl6IeUaf/fx+847m9hMiWWAkKanosoPMiQElWunpbdUxU23OfH4z7Xr+uL7HS7Uywc0xI8QCtzBlvfqjJOeixxo7UTKycNFJua8wkjGVCC3e9Nn+sCicHMj/g4+KquHt52KeQQu6byjLqtwIe1E1Uef/jpkbCSVdyCyzUJbXkogEAGwzMGANFMO+/UiXeDSsW+P9FDJ4z9cCFCoM+l7FzpSSXEuDVX2nHAceAZAUUVvlavT0s5w0+DPRNbkPRu3scTM5RXp9VcSZWUk8+AJnMyzrDMnAWQ4A+AjOxnN/Um//W8VG0NaM4njj/vnsi1KcaKsu8N4Ue1PRtclt8SkVXrqQFrVJ/fYnMaak/G3WCCuDLAlqMNxPyUfXD7+oPvZyCLT9BVhKhT5WYG47yjXjnCreEvvh4aHqCvQRNLMdbWvfcpMu4nNdAOYcyoIsxdGv5PPcs8X7iRlLNYTHWZjddu169JpzjWGMk9tPE+f88zOltPuQRAHH7xTpwo75z1sepy6OLtzD7AScmv8m7DFVFC+pxv5AT9DPcCbIPlldx9kBJ8seDGTZm0ZbzTBpPPs8YkyyyvfcVzuTBfgeTMF0S1mR/ArY501fDcXI3g3IZV9sO7/xcnAl0JklPLN9aPnfEkyE4OZOuxxMd/E1lHyoC84qWJlOPMz7GjF/80xaLW324/ubNnvQXds5DhD+LoMPEUC4MvKyZh7ezK4L0kmv4tf55JfHriPbBpzfDaEx3nla8RQVkY6PVzpfJwVWr6TfmvPL+bHANpDkBH1KL7IkwWzPQLK3L078KpJ9PNj2861R/MLwzITLJf8S8auhaTj9I3EWYEVTZ+8Lf333uTSkRxoliAdhAxA2hzoX7qEV7fxy1FH1rhmKdrRdo73Byy17t68c9p8h6o9o07FPvsdRwoRjjeyITgYQnm4a5mmAbPQgCIB5I7hJ7PcSORMBS1r8MlMTvFhe8Qpo7mnhwFxZqxzkzgmM7BrN5K9WJvu4lPZ9ezd6iTD8mUvNvI0rvbYQV5KN2a1WAPTpaEbK50TO/dg+SopxvgSh/Vr1cZ4pjQhJ6yZraPq91aSJjvIbWLoyHVvCkdv5QPZuFQ2yXYuXUVvwfSByxPn2F2dn4juiylOtSBfuOfGd8KRGlI9pHx8etiKFKvFaCnY/f9FHPHsZxFM9B+H5pSGbb0F7FCFIvfdbT4rsd2rp37/Rq7TtwbKndRHvxgW+i6xXfJgxh7H5PkZ3ad+bosRLLurvZLXZYV2R28dHrC9LUU9I16NrM8C/Z5Qkly96j6OpGyrT760VajHIwl2orVeDK14CiPdVUNkz5ROw2k+2Imj2/J9CfIDpPmRFWDLLF9v+4FhR9bRXopY7miUixYn0KpSF86HDCNKttgvUImhecC2SljraOC5TYbb/Ab2ALRisSoe9zYnkwwH7fRbGZviY3I5t/ODejShH6J+OqSGDtLZ87xJAEFT5dVoF0TFmdlJQgItL/VNa57EvMLy78Aq16eIBVV6umXblVrYq0in+8vcz0l0/aj+xBZ3/IDMtKvhAp3ROy9nYDIErIIrm3mp3wQSdP7WpTof1KdIiqN75Q3B5otVlR+3lqVH/AdSBHSB+wpgeO47CdPDni7UCu1Vf+XxpXnwDLPo5tlTaNgcDLlBHbZ3bYxcFoRFDGoS3f8+R3+tXcZftTALLnSJB5IveQ1ERen1mBXGwNrh848XQZ8unnp940HYEkGO5uGc++uHizE1eOCt/xkNYIb4if0Ix+CyjaNdrDanO0TmRdp1Z0efjoIpizsM7HEeHHtqumff7ith7LVDy6VWwt93m/A6XATIY4u5WZtf0+Evzbj67iC03VLDKYVdbeJxG1Ajjt12UI3Ftl1C7Do04lLqCwBvm26gaHyfNfYoap+RLd6a11b85qEr3s5LkaHywJVGMRnQOlMa5LG6G5txIU6SPHHJyYMLE+WUtw4mWk6xQUKp4MogIyktdOP3Cz6Ugu6psnx2hO7ynhbnYcNF9qGlsu5/YDVVsX/G1UUuEb6HU6PpDK6U0Vd0lYzI7pONMz+TLqI0xM9Dl+BmhtUBJ4GRBZNznEf0ZptOTERrXPwNe/yn9IjpShu3oDJzUj/XjZ3DqNCwLM35aPnjX4hXz3ey3G3roMRFTKOECwv2TNB8h8W16dLzurFW+Pb+AFR+2Ke6CIN9IcWT1IEi7rkSPrkQ7Ru9uDsXen7qAhqou2P+uXWT/kODYovlBzQteRnQF9UyO07gbBBMF+9XoNTcR27V4m3chOvR/y/mo+kNws+AA1Zv4VkHje9sDanzAEUHzT1RvwU1DBUhLdfzDPJhaet7ZUS5bUxqUvP1QW3m3fWPtOlItbGnDSkd7Rt8LtfVMLsMvD+tXRA/FerR0KiEG0OF1a9ebJvazxS21pyU5+vFJ3gu92UjdvWAHmcgOFPNRQXYZfV5cteYBNtfaJQdjk/fn0puRXDwBCUaV6rPwp0H6xs1Vc3NNRIMoGU7kN8O5Bk9lZh67AC1zbip0hkysoBzNZa9J8asz6B+7bFV6hBwkmrpxVZIFTbAsZT8ZbM3KTvRiZWXnEwukO3TobN2HGer8boi8XBYTpZBdPUuL6VCh5854a/R/oHwfYHUgX0j6dXQ1f8pfclMWjn2OFtuujvvTWUJ8BsD11/B8FJqxNML1bu3/HQcxQW9r3OnUvti9TeZopQulzyt1i7pT7yeBu5X5au3bVuv8ltJI6o8tjZcD5et8KAYhP9gQKMe3XNkrM4pbiXpAfsMMhSB1M8G941TDcMFJJ8Jk/IRt5VZulLIfbRBhBIlWmxQDhwls1fHp5BtEr2kLEI+o+vpa1jM0c82CEn+lLPoziFbML/TaYM/ae0FeQ04kFTz3uk7suEgwUQ3VhD4tyfa3SxDhw6qRCI7ANZfycZnnqspGeo2Co1Q7a1LaMhOPLnCFYlVBFfrd4Oj7Plubczc2l+4kMobVauvyfrV7irQfLps9wgc4QGavuSTQvLh03dH0GnFPfWpSs0GkXKNelqea35HvpdJYjHE13pbWp7jtU+TC3PPnBRWfrj70Skjs0nRR/KoFLxfa7k/W4JfW/NRF25I2VSfn29+vx7WmJiTyMi6QNgu7Xw7MzZFN8eUWYXcmVkKkGT3/asBCLwarBLcR7bydxlIl/ibJ0VgxXo8NKSA3ojucEGsxQp/fWBKZ8+71w6K/0PjN/Nx2PnGe/EPGy0n7PrsVzB8H89hLkq/6g5Nb6RSCujSjLofvXzOUfHYVvwBcFg2Fs+2Q1qzTaKE1HMAO9jxsDK85C3Pv7rVFydsRXIeiUObR5lzbTxLd+ICNGTNnVJcAr53PVfaZ7U/GDCjThuVAfmGpbdbE482lZCtSQAHnyTEyvtQEaC4PIpfDXsbv4v/flc81tzl7Z9U4KkwfWxgEWSnBTxZwEJ+7FgZsWqCj0zKR3QcXQ0F+QagO7TU8IkGI374pgO00rMrnZFMnXv5zbvuL35wXSUW4sszRkRNBba5YzvlASTCCYMVBWHHISl6k8dVVsiCgSsT4IIxlMs/aQn+NRjStSUR2P5zY/HyGvIDoHtNT+JhEbkEOJ8UpBDndHRNa6+GHxF31T5TxOrM1qvRc1cmypEhnaZ63XxHx1dHtlznnLvDt2va/olrbQ1brlSxhp7Ef9Uj5xr7iP++tTCyRlkImFyalJEqq5kZDwtTMXYGToWbBn/Eh/Dk6B2cWiLt8ob3U85VobJVoD72uCVs1R6vuZl+R5ijatVxIypYG5IhNKCN6kgJjkJ9yOVBLkkrd3Xrny1AQeZzL5OXfbndor+D36SsoedVZxpXt048uNqMqjppjD/785+0lb4ks3Vm8Oh2CDgs8bHEacMo0onYmOLVTNW1806e6rJqpl2q/NS91nmemKHvq4kdwuiK9whiDGdCeDVH8yddxP7p8D0q+tuoMIWDah3t2goI4IxqbUxWSdmUbpU+NLmJS2sc/Tfr6vi9709klaL7fjvb8RJSXDn+OPgW/rP+1qUoAaO5m5xcqSCsdY3bF71+LO9vIz49Zq8/zJUzJbTp6y5nswQY3zXiTwdGCCRC97UX8QidtAmm7+Qp00a80iL7vChgNUaG/tF+7nhuxWY5cfilzPvqnR8Wbsdh9nBjVsgtB8wrbG4QH5XMXk+IZVeEV289jiP7yGF2a6ZxoP799vCTYXzxzOiLjKLXpbDME3TUxVp+PDbVrIRqb0IzkYt8kRPEFy9sR88Y5sB2A804byKPvZG8/3wj7tb0tZWd1zrL+9CXU/wNQSwcI5dLpY223AAD2vAAAUEsDBBQACAAIADuAVUAAAAAAAAAAAAAAAAA2AAAAMjgzY2NkYzNlNDcyZDA5Yzk0MjEwYjAzY2JiOWNmMWZcWnVnIEZhaHJlbiBub3JtYWwucG5n1HxnV1PvEy0ldOkgCtIUpAmIiDQpAREC0qR3UWmi1NBCD01BiqGptCihNxWkhCYiICAhgBgRCEgxCb0E6XBP/P3XXfcr3LX0jTHPmWdmz569h7N4Zmaiz8rMz0xFRcUKMbh1l4qKlkhFRZ3BSA/8i4axoSsVVQwV5BbYMvTXSgFd6AX9xkaPdSfG1xPXMh/3I858uJJ55ZVU2oPG+XfzLxUUdF961U+wPvHclJtZbN2VE3d/KqgYd2UQoZC/4r6rFV2wVGleUVZWJj5soKE4s3tzfWzrmwF/RvhSgUWQNIc2Bwj8/9GfjEeDh8mKbMRlhMIhjwdvCVv+NjWBl++mH76XbvZVCu+no47i5FATZb7//Xex/hDeScG9jxdfvRUOfzFXnTpIn8sjLpefGpO7riQvcyNqXVzX2mTyaqdLNMc9vq93+ci7S5NqGj7H2+Tdl52tYp+Hdw3b+luOVROhfbcx8r9OhK8WqW8ksG6j0y9tvIg9yUuztpeGyQiZt4nvvZiL5um0aJPby3mbRPNfvBA/Va1SlRLsqJVnhNNDXZZ7/ln+3A7yTRXPL7Qefxtkc3yGyrWED7Ldv58LLZsRNBGZXrCd+bHqPykuGMB2JE3IfgHNNL2wZ/km+q8Wz+n1vbtv1sfsdpp60ufDutJ5O80uYoSTT6w2ouFaLHjeI+N35hshtB0n6fAiZrxlW03oyL3Yi5zbyXPDyanJsvAheM2St3LjRJrD913V99PBD3/IdJT9V/9nLflFf1/l68clM++48UlfImVnbw9yik2TDvNLQfoIqLJquhhphAbOBk5vzLexHq2zxLyKPp/7Sisut2njGnvh2+hbkefsPfNtpjEPDi44lnec3kI+Rp+CaXOGd78zUHda3j2dWdKNdamal/8edPm0Zq/A/7tiFdTtlP3GCUpTZc8l6KgYvWK6pEv3Rz65s4r9Enmzbqmb8Y9gT2syq2G8stoFZUnRGU9uX9mRSemuYPaXHzp0I4+dXxYLmDSNC984MosVYYSLGCCY1BamnMpFiRzQjHy4kKzqaZNO9JAWQXHnOGl8fzfe3+djkQSGbsC97OewTNn4br7ZBZsL1u/erXOtWM8de4tPdQbPKifPSDc8PcXv2ac0FSaeSgiceiNLpuRmYZc/qTfWzTBlWZUo//zp+SBTzYctq+6lL8sXk4Fupr9sQc/pJ2X8ofcv3RKm1F4EiIFRDSSojR1kOegUBB0r5iGLLInblZEtT/dDvNZ533Tqn56RXdJ/HngolCA1FyyFO8L0rrO2GbTcNtXABfjw+XM7SeECOkZo83hKkTaN953twNHDZT/FCycq/A6vupaprV3zWU8sfL/BTQen3P6/5wElSkLqYkWJcp/b62lWtj5hrua2C//52zoeFP4dd/nAN7DuftEqMXHyyc68gsdTyhcZ//ct2n/fd5YNcDYPdqJeT+qSmwv/bBB2fULgT/Nw8Z46kyblOdpYUeL/86hDZ+yxGGEEEe7emRophxN8J7iKU0D7Xzot0np4oQCrIUY+/T3fiztQO45mBvIS+y82BT7oShwbxJQefDpVjMzVoRxJlnbrZGGQjskJaA1t9f/y93S3uUshqdiHrSL9T9gsiuWAsHz7ORDt03QxIMiWmh/v2GErf8HpNhAtX9qtVXlIXZrsj4tMB3JBJxoVmM5gsPz7Y2EZJUx22b94YToD+/7p+e/8Ry+VXZjdhri+VECeaB6fngGCqrgNkb9zDRJyeJydHXh8c4JB/mATHVl33NHS3yJF+jvjxKmKm6nyXdbDrApzhL7w3W4Zp70E2uTSUBk/ZWgzgOkt3rRH1JY4nh5e2mkvklKYKrmVwEDWHxdpx6r05fzE0B20mROvht5YdGRB+2B2qkDcZAOHmh6YMNn28Xt6IIk2t7DFsoQyjbOed8i7y6fcFCxnFTNA7H+wsB4Bjcex7xfg/FjglggjImKEEJ/OYyNNOgg48VumTTg7d2px8dvcoYX46AxXG5fkpLIjO3nn01GWgojWo/z69An6Q/Us7eMr91ZjCyUPkXVNgsqS4Jly0HRW0D8qOPO+qV7jm7/+pzAHRaCo0+lwIWPV9Ov035tGol0Y/wGLcS6PbD7l/s5yM2bOn47loB6eC5qxbCsPtdtMnjPu8oavM+HN2ipCHTYf9MiPJ1FdIXaa3T1h6ZF/ctQ0F9JrntKWs6P1cy8TsXuqdMs5pTVnp1PyREiyqnqSDu9sN3Mvc2und3hsWDdoIZz5uKsrmMFu927CLozcfdabg7zASZZ5se3Xwxl4Q/S/aAAIrG/r6oltRg/HkfMQHZduI9jApprguuf5SXldnlHy7vIXKQm8EM+gBmO9aUUZAw9zIqbv+CaBUZWHtcyGRybiC61ct0ZFidl85IEr8mdwPI1fQuU4KUxY0XuzfG+Id0A1XhDMIXZj/9lnxzHh2s8d6mY/qv2aWCXslNN94ltXNZMugdoP6NovBkSxfU6jBPVMnpARBDxq4elaLrLqJFwjOVoFMsO30adJfCZGzJ42+fiF8jkQzf2MxWQXqWauekj7/nLahCXdvzvlhGvQfjLKPo5ZJVoG4T5E/czY0XXFfvAxRI9txhv/4LbDDqubVRbK/ztC+tXH5HUZKJ/XGldNU9Cog+BmXid+ILnyHOXTzQfkH/H2c0PJB/7icz6fhUxGWSKvEEuzXBi797X3XzH+S+ItjkDZxT9R32Drbmeh7bgta2FGtVuClJH1nfgn9k/W/mdmA5gVM5pPtdPznnMUj7wS5VtZenUSyrvGJzVzyskuAi6nzr8lwEmoS8CJ/RfaI4tqG1shsCt00yn56tTm+hQW/AMXlmmAeoNPI5GPpQ99H/+kmzZFsP37LGNrxIHs5SVfex8cwrVl5Nr8NJeF8vzeIxtkteEJQ4IUKdhVme4YF4v1WovKhH5Vo0TQTIjsOc8HSU9A5umcgM8xb25Rstef0XeGdFI8x86GEIJgh0gbpajlyOBTo81LXbs8vjLONtrfKdX9Ev0ZQyRtOItPVyHDXwQOuT2lnDmX05tskvxYz2XyBUkoUbOxGKKvdynO8w/B8POp/qaEOPF0/iKpFJmXOre37FJRF12690zHNO/0zWyrIWbGLODESZxQJ1loVQ1H9YkZO/4bqHUjDrjsWxBsN2Q/iW1jUS+UCbhYY8R47EHyDWZZRBjcERzLZVza9DY9NbaxOMxB/WgbxrRFp0F3TKeaLJT8WCDSKR4HSVu9KMhmgd7f/auY9nf5FXUv7rWmq6Rfc3X4ywdFzDcb/Ya7veEhdNGcR8Zv6I5NE9/lwdca2KanHq16GGI7vb+qFKt/6hQPNXE6fc5FXi+P7iSKEL7Z9kSLlZfnBeSXfn3/wkMdzUlqDJNrGtreUJcOcAl43hfPTgXcgEsLNrOHkGRGSy0Kq37K5Zuv0OcQm1hoK3xb8hboOVHDK/rStqjb5YP0t+81d7vRPuaRpJcBC1eD2jtFuY95gjnl/F64SqiuLb+g7n1ftOrZiT9RkdYpYuyDM9+8ceh2ZR72a78xRok1Mq/LPS41mRW+k5y6tGeCrK48EUw4wX4xJpIf0xaGXTX1S5ml1lNRbeozRfgU6Y1004bdEGWTGHwNZstNeGBGJye84DeNNDyJKOt72FndeYCUtRmZQFZQ5Bfkgqt8Ow2YXYIgrL7x4uAeFdDPUgv5DEOCIJLhgC/HnbtTV15Wp83zKktR735+d/WM1RnrM4odQqh3KZFdvNdEbvPsPQ3JdqzPXzfTwfSt0k+e8ce97YBEzpxK57szENmNVu7fwP7+INRYnLPruOP6PIx8dyQ1B+Udu+ahnljsci6/tt5oDXkVcfNrcJ6t4pUBrWGSArHuUEC4ecJlOSKvWfcnAEmuS0k0b8LfAgOgu39fgi2iWpMHABDEAEzo8vfW41P6KlT8EvXlKFic0HQeoWkOOWBkRNeBjiUMe8/j7d3KdE4PNXSxTQIIzJGS2Y+fQ6vv2cgxeVnOkB4VYCIlwJApMXm4SeGiyaC4iK/vpI+c4ljBwvfV1ZzcDdvaR9nC6hz5JX/JoGHI3NWfVpGeg9ctKdQw4Bq3nc1B9gs48TqHmZcCKm8eUICsVaAysojb44z9MLAvSO39aGvacNRXUWyah2wAEHCdmu2nkAkswocPqjF+7MsbUf0bFeEpLv7x2gw3K0TYlikR1swKmr7/NDUid3CLdlFmxb3EKUX9R3OSqRPd7pl+S/KZLJdHyMXJ1BOgspkhTYMFC0LwdJH+vOJsDqh8ABsECMM1IFsBOU9tqax0VUDwnTThyu8xkGIWaqYmBnnogFVO4IS2ouqRy5X77NKbtsciRNoqyD+Shw49ZXyr+fPyyuvC2C1WEkL1I88QqCK51vBLyzM34Z0I0iuRiLBCLi8NmZJOlrDe1cMk1b/Xogr5KthD2rmdeFoai7ntmJ3pMznf8T8slSGznT/ohgcnN2jbcVsed5kaA/rr/WCPIeNBGS8FZD6L+QyiaJKVqdKeIDI+/LnonCKPPbZMFxspQ9SyuXjSwdqKWje7f7LGe9O6kxFdUMkRxAh7DHJ6YJKurDf9WMgrON30snkd57vSo2XmMJfJbed7N13Qdg+bTxh94JrY4i+77Cry+iTe3y/5bi8FdmOHF9XCO5OdYz84XWn4tEwwki8yUMTSzNgzRRiBHXa6kvBbiE4fZGH49tfv1o41fikdqSdCgQ5DasnePGo4aTLD0kF3vDWcR09Rj0Vg9XHf2dgPl9/V8MDCHPTnf1prKK9ezPBRvwaDJIyt7hyPC8uJ9ufNU3sXbdsyqlWSGOFf3B7xw/HOrH8SK8GKRsp1qp1Gb+gib4Cmd+EYmg6Hd32f5EiOGgSvVa2Oz31LNuA6ZgggeFKRk3pOLGipJRhzCIzrqVqKcaVo6UGLUEnapVSc3fBtYnFH7SNw+heq3OUDK6rDxpzSFW9X3KRHsIWnl6nil/biA4Gle4yPwsU/2Ec5SCn4ckoupyLd2t/AIj8LGleYKqBmjqhivGo9q9Nkv+Nkv880OdUad/lUvTPyl2AI+1HPRP7Gciyql+h/JyWm8A22Z8++WIsR0gSJQG8ew87qOsTdoD9Q7a1O/GLyhmvHk4UyGTOamW2Gd4QIN6mItfQPLo1rm7IcnBEn1mc6Ytt9PlpPRGLbH7//s6gw0RPhew4yw1nCfunoCtFGemlTjhgmRKeRI7hQLEU0IYdwBssuPxNbsccoZufvfmQ6KNeeuPHyIEL91rGsDraATmPsk6agc0p1jp5s9xNat2xiaeODZATBr6+0t9Ph/F2fKCqsYbt80w3P4qgoh53jg46PARw+kafqLff4Vs4IOKXW1X/G9tDCKuBSm3+SLtk1FndEP7kglKQ6+Mb4nNr5Pj9h65fC9LO0VKfPDhhsJIlFLTHABFz+fg3UHsf/fQO5dlt8cqog8jXC7yxZPTt/pgJ0fDZI0OimaUKnKPxqz6Em8Xmkeu3joJYxBXWzG+2jJsKTClOLkdJfrcWJl02soDnbRXT5u36mt8Dp2SiA1oDcnB2KxBb8lWg67ciXOdp3brJNKUWy70qulJZL6Li16yGrWcJNkI9VRw3ykOlxSJsK5KSXHbV9C/YXGDt57v4EnlqLBe0wTJUaJagGWLfrxMMMr9Zvq5tuajdN1J+k1q0KMzcoFO5epiZfLk/joas2hOnRHSuyA0S2d63tb03sZmmxANOijCoOXise+ZorcIhHnDifhWRnUzQYPdMg+ArvKmkWJz3NWNmp8Gk03NxjkihwO7S7/70TqtvVsOlk+iDVsXby9GUHypNLMm+pnMF2WkOzsUiApqOPg+zU++J3qZ+AzAZ1whgDr/Nf8O6HHnsrZth1sella+/fhXwS/jfSVTnlQib58KuNMI7X837Pe4eHmbb3GkTUn5T9KakKFwMLr11cOaZdVP+cJzhrMbeR7yQBR6bHA0aJ2wCr9CfyvYs7X4jySmdf9c+kQzNtmyULWjfvrdXhCrv3+pldP1Eq96xG2xnRTl86/agBiRNS4cYI49PF7PBDZQk3sa0js4na+8mW254s0uUXwmi3pJpMfQdI2TKkF5OKBsP4dttrLWjMZPkT87jnK4ZRZq6dJtF+v8Wgr4G5lonVq7q/IjbyR/vE8C9E2cNUZaQ74SaDa05cy619gev0Ze7ZA1P4wakbQ4OFRF5eqMX3pGZGWBsE7cOfU/lF1KagfucuUsHwa98/gwc1hQut7b7SckmBVap5QM9sqxc8dDKtUxZYeaOAzy4Ro1yD+YBPaI/DVAYuEtU/vjT0pgK2jR0PDPxV+0zo545V3GtLpXeeNAp/GZqMOxUlFyc0AuE/xdtNnbVea4a7Wxk5PKCtRwgMJvunM245noc0sYTc8bgrJh37YaewgNWrcT3MJ9i7Sbj9KVr1iXNRH3nrvOyTV/5iJDRs7TLxwQXQ9GOeMg951Scf/zSyo3NlfwAWnnyLB5p6YjYc5YKm06la/1scaR8pkdeWVyfxoyfcqIIBUBcLp4zdfaH2nKDNOKQyY1bQk/HlJgaBuIkXj+7ZIOm1XsV+8HLO4CwaqUNqBQ2tCdEYoWvLd5cmk+jPnM96fK1c65wff7617ehm09lA1/XHT8NVXNfX33yopYtEdTOkoUPgZ1tCM8hnDRv3bk459Xt3wNouASOcW3JGEjPlYzzobTof96JW7tavuikSrOwfB1EMZV8rMqkbD5IfvLxu14hDPRE5st/3c5gS93breAuvdTsyouzHKmVhsHC0udd377AhkyV7bKvAtRn+u7/lfdqX2ZYKx7rNscYQD3Df9qLkUw7yXsZu4e2SHxXhrf1PtSfQK29umDexwG5ajqoncpIj5v0fgZWbHAQe5ne/uvGgN/0JxnLuo6cnUhxrvDQtly62Y9X+f1M6wIieXD+DOzecFVYmt/t3lTT6/LD8lC1UOeZX8i1MWDp8TQ8jCgwWy1akspXvNVhB7cRLiG/SDW1WP7VlahpUVzR5DWfDDHPHyYl6QggfSaG1IiSmD73Tjji81vNydoUv43JLMAf9dlTfOsK571z1MrOfaVCU0IIIyf5b/fj8ll4RLV8Lu8SOk+AXOVwwlLvjgrjFtGDl3IFmg6JY31RHVRyC0GgIbbiTNMkwPXjWW5Z2zaFmYsShmnSM/XjUCuBj91+ic77BhUgdid4BZUXDmKUO0uFk194h5KG51ro5dvXiie+/HN9k/S7QVsjvacIu6JO5I7dkrPbmtZ34a6Q6ZbXQdlvjRVEcweUkmPE9F9QA7XtLY1rve9JP1JRYPtLjgBwx/fnGVXYJEkxW2Ui3is85Uoo2WsZ8wljXKGxjBucYzhqNxX6PshTWRqlcMLYzfR/pkry6e10RVfne/3H1yVny+2c1zHXR6Sfn/1ZGqU++T9DldWGJ0p8/5wX7eHk6+LoW6N2M3PQb5sczW9+Ae/ZfIZoonkPzw30wUcR7X2FvU9A2YGW3qdVjITAHamDUMvLu2ncen3gdl7IZRlGCpniVgw2EUP2NowElsfQgeuOZPqn2laKY8hT0EquQZtZaoaLM1x/trWZ6pmzmpk3P0BMXMFnb5vQHtP1gzdq3y3/8/tIn/GlYe1xsX5jcmbJE+MbAV+Tx3I4WbOch5SF3PD+2c6e56P3p983w6/bYnc754/2R9Ok9M1Fxjl9iNcYi0NdR+pNJDDYf/iFrDoKtF3QvVGGCvTWCfYpDhmcHUsydVU5VNpIgSa2Me/yI/KkxHTb2KA6c20k3DcEoRUS+HVBlUe32XlFEP4Qw07NnKdKfM4DdfYa2sxpuitw4Z4IxBu8+6G5WM+RBg6aaNuZjYX23MpSpLh4Jh9hn+vZ1jL8ag0aH93Rkbr7RzovZlf1xdJmocQaMG+LIrEEIbUgSsyeG6ABF6A7HmzMdmCWBq905QBqa96TcOE0HiRdoXDA4ibf57AJKOgOqyl310ZKuhgem0YczheIaMRVrz66/xA310p+7H5U5e5s2cp8jqGNwa2IfXcIfsVzq0f7kJQJPA2fTLqnaN2ZtIDaxZa06c9feF/ZKUQpn2K3kIgtxgtrDuJ6HaD2PReqOcoKeQR5VKL/CUxM0hpXivsdwBKwFNoPzM/O99w5uhX+7Qvj26U1cN0YECz/5EX3MYUVeyCLzKP1cLZZeVE58EShL1I2QJLrTludfJS47zAYxIA0r90yyYWUD7ZGGkc2yP97KEmHnn2vq/9TTsCtF5yGEjP+tBri4wYRMmPPLgRaft9cNChbe/50ioDzcDWx71UvLEj7hxN8i2flvfLHCHv4hWBliRUlMUqRix6t59//sEx2dhi8TaxFpS6pUHY4uvj4J7jPLbam6SpqjZ72dQRrKcKTE4PWQ1nJ9CyyFMW45YcMmXx1p70cOry5UZWqApglQEt7YUGUwNCmtQhS6lE/ZWEq0orzPC3s/aAAXmtK15yUthem3/aD6YsWLr/6SN7S5MrTyTe7AxHhtRXBq1VgsMLUS3ZFauOSsztT3aYQHSgGVOYvv+17jLHqBM/VvdkeGvgg8imBUM2oGMnn7uVB2BhzTzKQ2GOYGEkQU+sXN3cx7PjnCOg9AY/rMlFi7uLMHFVcjc53MZnBDdd5h0e5TEcJBcL80MfYco5oYoDPLGWEuPff49g6ut9kdCOOdv2VtNq5OJnwam+EmKcxc948ww4YJh0pAhBWjqrO2Z072TW0uBnOQv3CQabrO8TUg+faIjtP2Q8EDrLpm+FO0WzdHG4ZK7OM3ZYvRGrr2XOneqxP0TjRuk73jJnPvN3LNz0INgDvZZJ017GDhMQlwRvqMsfnGbIoSKwrUErMDjS9quOesiV5KzM6EFkKQu1Gd/lPGd7F1tzCiRCZxIrozMQ/Ft3cHO5aN1EeQoYxqVNoFy78m4qfkCK+DIXLEDCgIHCFBbOm99/1Zx5IFjqftdw/DFWLp8yafycvxR2BarrujSpEHu5l3ijQs1qI75mfxnqyhIsRNjXuLhmTWWOwOgb8e7M5elF+2fB4uZIL52FY2H0RPVb4tWGc3fA3DHmyL2fm+9+sc16A2APKKvw1K9KGRTkR6cLpwKHOrFKHmVwNbrMzKs7/NdqO5NXZWaYvL1vrhn2jB6evU3qbixBdikchhUHtrErOaC46/ThGIfx2qH9pUM9GAvGTdHEsUoFyh0gEbtmquxbeA7q0/PdozotwiLok9KDswsW5QICOdwAIvvFPnJCBOnGL0cTzX0MZuOR6shfpYiSTcrkR2biwZnQ+toaa6AU4XIz1RuMDGSd79N+TKkMt/dDSciGfA6Z1ea6UZTY+npeODBX/NtwDgzgNUalaQd0gmuVCTm2wwHnhZEM5G9Y4J5n7uTphv8m8/VbCHqlZJDNBmdxe9yqSJPgFyAuy/h+Q6ZpX+BKv6jlS6MQLTkQgh/1rkh2viE0Y0uaHtJ225LOVIWqpv207cup+mxdplQRq3sKYT/x0Dx3ino9GM6JWNZ8pte3Fl71v7VcdKnRxu2lC26JIakdDCvxeJd0c31WipzoBNd8zAHuC6Z7/9roaDCJ+pAJeOMqQr8HcoAoHTdYH85+UrRmj4Gv1pOow6nA5JoAIzmHOQRxKRpmzdoUEOnahWUWKYawwQzYq6NQqWQb7MQQ7YN9swP/dWaokRLlILx8vB8wN36C2m5jM69sMCkgHBvOvAC/D38UUSB7mZjywqVEm4IyBcUKYeXl6oWECJKwtajwzheRgPHgznPpMw2N+S948AKxAoT2p2W4uJ7hE247k57rU/Psxh2zmyOvfAu0a8TimhRW1RonvgUVGivzxRmfnyrfLCmfJ4nHy/dXN/Sxsr0LgxiLU0eh+AkFqyTemKErogo+kMVxeBpj3HDGtlDJCjE4ILFb37ueS1ZhJQu5mJ3I7ErPwSB8mSOKB+dE5TEqH3yodBGrpMob58e7DrT2mpiIEAZAiv5KBfrtr+uQ8Cn155jjxlQqSJGARZY/cPeNo2eyQcRUMyA3vlBae7KZqBA2rWj0srCX97z/CcLaZPkjJyLjLC2IHG+3SZ6MUJ0mDtvidFOIUCwZUgbR46/qvJxYpFMKVhY5y+5n30FNLxKcKPR2l9fFpWGsQMdiF4qCYhD2HYXw5MaIEHEbbgYUsafB9dhyY30A6fMgLljWO8JTbP/Vxtn4KMGoNn7F9tUlOoypMJXfuuODM837flz2XCGeWs7bj/hA0Q5DNcbQ0XWcFfmqgKxMQA4NaM0FoqtHjTeAgVnx+eCZ2+Vbtg2MtIaa62LxaZKoywiO5x/8JeoCaG2+6Ls4MBsEXr5eOVl4WX9fLLFid/D+7DGNWaacCdUvB8b7Dvsi54fZkGJEh1jxmNf1PmcO4OuI5ONV2SVIoURo/601ACNNj8LsYGFzqFY6ygrfnKEC/7tNKhu5VO2I8Z6k9YCCHgvpnXdXSRL7nIBgi8ABDjU5t/wiP2qwNRBysjRRw5uCpMqQYAumtDgvBCkbGp1QB8s1cmR2WgQ7NfQG0sMs6wVkv4LBjgpd2/E6pqRkyhYpDhz96sVGZwjPC14BCwaaxv3kO4szlEToI4UujPANQDBGeDw9eAlM2Uqq25PCpLW3w4pclaVJHmHkx9x9cUBO7s16U7vlxkNUx7++OgMSb8GoU8lvL5vI7DctRw4plIm9sZH5HR/FX+tMA9ORhhiG7vb2HJrU4YgRs+PDrWTbXj0kSTAMxGxxpQiy6c78v7b5OY0TOIEjpH7DBdR4eosy+VGZj9VuFc4WNe8sDAex6ybbqgCEBJgISyB4FN45ASbFc6235MQTDLyo/N0iqdtwuURTrz8ydxXxWvEAHvFSFB4IDOsMBQS/u3gtQ7S9oZVD0CRIlUVOJEWRo3jfjPXQ9aSyEiRJuLvdmVhf8USA5S/wDFC6Tx3dQjcAhiG8a6lFsMLk60kia2WeOztm8b8yeZWcHZVE1VwOmW4N0qJAGWEVhKCwSLOInA2WLtseYZrt085L+Uc6V7iqx3bGmA+jCCNCC/AfpEJmUGchdGOVsNrUwt5FdU3g4GSAvNPvqJY+MmH1oHS02ViPSGNI3hkVJfbjYGCNFCksovGXCJDRUjy36nyr9/x4Iufomrs2HrcLKaUm7ND+SdMbmde8XlqerCTTn6aufSpsMgVhit+IxPAN6BGsxARVCXJVa4VhLvMIgTlUQJVocdlEXlF286jUHacqQEwF8+T8MK0EEDXQ5vetCf18UIf9nP/CoL3ujJkzjJmXsL1xyh7Y6AFbrvY0Ji69Z7Z3foRUjDIUPZEerPWuz0fKX2mBfalmbGKLMitAapPyXP7RvxTJ9Qfceuho0TyqeK+15jo+y+W+UdHGL3OwQReHg8OyhCEImVAQw3lbYeJmTVKqGteLDaoINVGXHI/jRsp62MUgownWCzoZrNSAFoGvLNG1fhlGb9xL7vFrblRUFePq7SKeXR92pOlHvN663wyq1Urmgt/yb6SARLlFMc3iDSjB+CfWXZhqcSO96vrRm0NbHBOjAtScQg9YOehCi1WVN62lGGaBtXuIBY08N+zKq/kLfhNtJhGgwOydxeru2U+7qjVJsrrGLZIyB2EixCtBIjRvL4IPDAeNMOCPwTlzIswEteufqwctuwWIWP3JwTSNEoL6SJxDk2sbuJ3YzozPzAcTV7qxW/3T45YOw5c0LSccqBGVBAafeHxLLYzwr8BlIZtujIBEvS3hNPKeBtM2k3ucAC0/kaliVOaRk1A8tQ9Y9+lDa0udvDpm9/22NCUi6fQmD7h6u7oub4b+BRJvRZP2XIOhuYQYRURZjq0tBNnQZEnP8FGyy34T+bGs9Nfjo2KUrsZ1BOY5EAQolaDcLlxMm3IlYnbEeHDuf0sMXH9GwAwdo8+KDBrCZNpBLbDat9IUrUAKm6frVsejBXkRL+ubNIF8sJGoHYNN94CrSeRFuqnQqYIL1jZeOiN9O8JLB4dfFoybuWLba106aB9qYRTAycXpKl+02UOA40I+eCIxzHH4PiI99eihi59By1PBhEpyEE0qjA/4PO97tb0z10shtSobR3nG3LjQHZ4K4awgWVJQEcgYs8FnDJjdjxdsk+IticKj49OZH2LKVRNa2NXfZLh2tOlcHxNgo/EzoA0ZBBhuPvpk7A6AaCQ951E3jWyM7cVv+Kc8IDlZ0FSsgGZ/vV4C1QXVj/2Bt8+gvXeZaGJVRv8UjmdJMXMisT+4jb/2uYDsvBT0a45o8ySrl2Yxi1sdQG951Dd0rOiBOneX6LFcj7SpdTq1L8w1wnSnIfAwUzH01ERx2J46mouxG1dAVukxCsXce8E2bTXiILmb4jSXwwb4kNSmjnpnAF4BdfyuHonEJbLr8CaZjMtALEhkDB8ZDfl0mrIkTtwLkjO9VFJ6Omsz7qV5acQYIBbJXlcM1+2qhqpPI10JTxaD1AZGLHLbVOyGpfPaASJms1EXLEUC39kBAQ5FcDU9bqM1J8zq4JB/ST494ctxrs73WN060mL8xbOujQRxxI5s/lK3h3Xg3g7DoFaaImAGfGALwpwBkiLcNBFZXvRiXOaNBab7sUCpIIsj82CoXyTtQZ4V/Ad3k5xQV9I2JUDzcXkUjTliD+1PNaORR3+q683u+0L/pEHzAA/BE3GdWcJ1F2cZoTdJ21YPZzNJpYuomC83XKVBB54pVZp+zn6i9qpFczthe4KQJ/7yauirtl8oa3/ejkbCq7JxiH0PT6Zcl/9SHHIuvXXDJpJv1gYYclGfAxPmcJ+uC+ZSZw+iXwOicYs80DUAni0BE3ca5bFYLGu9eEX2SBwTsagTaHcIHX7zHCVGzn8oBTX8KjtnSYpv3GUr9H36Ne/EsyVm0PkGr1SEPZzGhmaXlSsfLfuBUcQVidAHpIGsiM0yi7vb4kddHcZ9sgda3L+kx7IoDxuUBhlkg6Jz4bdOun1Lkl8df5El3LLBD9DJCpLkWwt9OCBFWYDn5CuFH5IcsvjO2m0XcBmobs5gt9rw+R57/xCPQEfywkKCWHsuAzIm3lFhm51jFD+rzpLoAiI0BgYXaAusVikGXSTOw4Mbk+DmgnRA2/XWU9KrrEOKcL9pU3YInL2WULHaN9nXK6d12lp6Ds4+7XVSm6gp62QOvLbsGrOk7okMzc3aHh4pCQx1JA32s5mIbtSpNCNbTp6K9fyo4xDXRtQwsC8oSjjoDOMcQGXsQOJQGTDcC0wWhZwj/FweUL+yRHGvxR/RZ/fDAwEAZzpy8pDXqbRvL6XhGIziLXTkwvHpB32VYzrw3D0whslvVI02QRYqYIkSoGxEG+HoQhCiY6ihNr5p2wmUcfE4Gj4YsHAM7wVHA2HVs0rCR/AAMvzBlRlSTaj7ZUYuCYAAxPpB/1sEA5JvZbquEn3yBXBLpAeF4PIx7aTm3gfELxi0ppg6naIRQ3CozWE8NLefGtEJhuG4maG89y3Ouv3J/od4VwZRHwh/S/B5uTowYLmsZ+K5YR91ruq+1O6IeuaQexHFjmZcy4z7t3vYzR2qVPEyNSHEcDsiw8Y3ttKdhfhhja/uAyiSMIVJH43Qzu4/PeXX8wjCX/KKZgLl1upFyhuCQ+8KNjShhg3Le+fsZYTK2/VCj4W6R2u0y+qG+bvjKcStHKv3WOjcHH+ihpWKz9mbloEvCEiwXroRdwgwlrvaHscDZzINlPTUHtQcjqsbI8VDGMTaeScIXYls3PosYSdvidjUuWeGV16urabvShlpollGs8cDYpdtBW98u65ZQbUj5PZK9yWKyArgCXyRYMZong/58OUR2hE6wLzH5GWTCp/Fwu/+onMk7JOKigaq5tXdVmYLLRV79mspHpMwJI+WT1k+nWlLRsnt9htFHn3hFv+9ljCWp+6XNViajDxfxpF4CUVCktlkfZ8OkywYJBQHeulSHhgJbIQBkL6GKdxAUlVO8lNdnmqUbXrkxhruFrdcMfjdXWxLsV/FYiRm4dQMDybVC2YYGN7ns9U/efNLLcPG6vFSVFMbI3hsM4oB0dTJTYnbH1rEDrKYEEEZSzl0xlxYnn5Tz9fVO5L/hxkaPojkvi6/PzxgNzoIVLGMFpCfxNPethhXbBPQNsXxWzasrefYY/5ctL/Ig1CfBwughxnxL3iSPudoEirBW52F443FsOzGhK3Lxkk2TKT4YZRC9IyWUdFtXHLy8B1iDi/KB6iJ/+zoU9z4zPNOrmVl/tvvDF/2azstrKQxKkqYXnaFxmeP6jMXuKO1WkBGuuzxGNqkBs39GzYWhAFXPR6oSeEsFLo+151Vnb0GCNdieb4bBf6qbRBNJqeSFtEdOBWdcd8TkjwZcls+KaspGSRDpOUDtQI+3RouXQox/dujs3J5MeWP5buYgQ5aBqh8PpnV8grD8nPniUPWbryw6wwO4cBK7NYRyq20M8hQvlZ5ueJNlifVlUlJ+OPbcQtmzcfoFUttqqOc+fSH1TpW+ZVftu0TLsXDMElmjaV8FBIV0xp1/nLKZEicjPz19dNTFxxfFCLUbtftlhw1hu3PFl0OSBCmVgrC2m7HpzfzYbj+gXMByP9hTQtecCSho2D+gXyExRX/qT2i9t6Sz2eFEiRxCFyQ2wk7cQgfQSCvcIoaRXSGT982VpdGJJQdVyyLeXaaTVT+lxCB9q76JA5xSfGQYnxav3gnSHN98gvZmE/9DY9N3dgNFSgdNFSE8iblonoHS/c4J4oQy/Zhfo8kEFu8oEadVunVq9gk73a+iHI2S73dl9mijBjHfImVrQNIaK9iz5QFMtZHdLhEDLSyn+9tGPH+UZuliKIZy7g51Waw6BI2kl2Ao1wa+cWs3KMCSwKA6O8dvJr+sjB8/OdxnkattZfBRgvS2TKAOY1/OJT9MDtGd8z5LvtP2gEqtBesDy55xn+h5YXU+Jo3AlE+wRYEcSkLRNbGttPfwh3sovrIL8wwCuf4lnO8JrS2k9X3gUWhNSOEz/TsqwI0mfUuUAFljaZ+NRRVGiyG2KfxMftWcKRbNEaPzVZkiDF47XVFVn1WdM0hXILGsEhOtgY+V/9+bOTf0Y4dh8zzaFnH0y9KvnFXJZai0SyFZGFqIkV+pvEJilbQZwDIAoobz8eNEfEBEtfardCJ+kJpsH4L5AuogrRK9HsENbvtuMB/t3sLSJMQBxCgPOHCL7D8sa3HC2+5IkykuUYKuRVhcX1R4nI7WQQJyfW0E/ZYnEvBc0OwLU65Zwxa2Iu+d87tJOXSkq6DxEUqypCNG5ksAkRcyAulCYh5eHzAZgGhiFP1ueHBR8L4vWmgClqX/M81QdXnt1qcm2e5vu6Otg9MEihzjRUbRolkY5dTAO4Mi5O5Vt1sOK8w+/MVMuY3AXFacPXo/J5H4HsKKKDbZArN0h/fFSXhEDmCGKj3zW8JPdlzK1q85dTatwqTWqmFDt1VihirjWs3uNAAAAu3OK0gOp4ho+PWN6CZSZrkDP0eab0pVVe+ymI3URC6wqZhyUJh4RcG4PTVPEBDOk+yfjtQOY0bkaWMV5A6woiaIkkhvYbY0RHz5n1PqMCUmI3+OD4nVS9fJ/J/pdjjhvMwGcJcx+7bU0WLhKLMLw3GUp8PDOK2R4DRKAnkHHtoBRiC8f7JxYG1J3FFC8XL4WU2MXP8HxXBJi9z6PBya65VMUGeHKemhhTFG/sEZbCxfZPHaDde6lP/wNvBaAtIc1El4IxwnEoB5z4LqLUbj0+vcy/0YgUx5/7IcdwitXA4smwO9v8ZLbolyrCGdc0glMX2KRZZLUHj7B2qaBwuX0DVFcZHCyAS9lD9qv2u6UElrIajGqmAkBLtnBReGEWxxkA+M5/t8PQXeadXxcwjHEJVVpoogJ/bkrxG6aNaepPsmJ1T/F2yHC4oRLjlgadopixHg/eb4UiloKc89Pc/0vXV+vs4WuzwH0ujhbsfIXswpLUcoJxF8SHObeULdxCgzSFZ99QPNb4EvqrivddArSCNK3fEZ7a+NzlbybJFhZoCuhCtk3eQBId6BvETpYhzBOaH5MTP+eVObCj0cmk1UKV9Y5oBz6cSldiaikSy7YaX2Cr5OgsNQ5QXrK3aSI52O/Tk+GfyGR/5Yz/ScVos6SvzPCC5Mz2a+SXkxaJIcSqr8FeHp5lE6psQ7zPs2NpUtZk+RTFfY58+gY0WGIuTTCV6dABcG1a3SreOyEaLvgbmDoNKQBtt/NpvASIxoJTCpLnvqANTHSzSGg5+Y8zV7wuaJDY/m/uR8SjzRsf18mbN0ITaU2UAPvfjgNazP1TUJJNP77shpIMHSx9Nl8SXyZh3v8vVpdoEEBgmJo/RoWW2l7CMEehmWRoyjfrdy2c0ceCRF8EM5asb0NGf+o+9YjSVXTVBFS2+12BRM1bRbAceYhMBazm46xKvx3HspQC8/ChenaXUCqwp9nlQDXDtIY091p04enehVfTthThwOdFcQCQykR0YPhMvl+VN3h+duWfxueY0Q9IcLKYRcLZQAWfoJ+RM1uu0zo7qqnfT0fRC9SAdLQB/TAKyaV2tTKc3PrlF3geLZ1YnxZwhsNkOBLOIYLr6AhC8qB5oTcNHVzPCI79bcMzrAE/C6eMdg40sbWmWG3L37dN6MDCcYscJM75BbEyv/rCQSH1woYI64yQnU5n/JDn4fRaZoH0adZwBmCwBm+Do6wVEP5qDxD+TZPQTqC1p6U09GC/N4kHGlzfYiVurOLLmevNrSAOgYp8Qz5YEAdAA6XDnZSANWC5ZDgxwKKlWeTTdBCd3ZwH/Z1X4t0lNSZleV8lNaTQBhcyO+8oRKy6Sa6pMX59sTjKNVqePZNEoPqusAG7vXQH8OO6QVHlpuAWmaEfWBSq6Qg/Nnk9w1JQkSkUf5DKpbQR2VpaXBMrkQ90lu186iHWpyoxT4Q1r/vATLNfdayF1LRsXJUn1PuEuXw9CB9M8Raw2lq+6IBWjhPWq+ykH08nbVOkYqDLMYD/Qf4OWusw7mL+J7YM0CaDJg8fpUFM4Jdcr8B+jhqk1uj5lhWFD/MxBRtyHTAnVzGaypdyOzcO9PteLRnuhde9ZpaN1N7QpP4+193Uu0d5+csmmPrEZ7VAk9Uv8zwAw+4X3i2Uqfwt44+vQTfrBhhVa2B/XM22ej06IoX3fHnvmgUi/BJsqF8h1gVASyltduspumeuS3B6t/0sJ38meXu6HD0hu6M5g8W4WP7gLVRAbiNYKjuW18+ArxWvD1zGDPpDIqUBAqM4iYXAjPAA0HpwLdpIv65iYlPQ0JEjLoQhXBuo4BuGh/DsMm/q2JBSz/eoHeWDHNq7MQh6LTVoiO9gbCnyKJwy82nPOT6EvZzU/IvaOrEnZPVbMZmst6RbVLit5NY4du5nfIPD4N6vKFrczI/Xug5RtWkXS6tdolQbT7r4hJ80l2075aR4W75dd4Ym6THAZUl2caxaW89TedTxYk5iPyrY55j3YK6DI0XYJW9vxUsOFrUgY+RSIlMlMtJRK5jYNTJFjvcdnnIxSzg5N2sqJrDh9uM+/YsJ/Ynk5dJYPPoz/Z5USTj/e37p9TdReJtbM7RKvesPndWLUzJzcmrXxh0cY8021z94B6mmQkNch7cVOlpf5+OmZwGFfMqqyLpIs9RUKUmTXyfCX1Kqf19caKX0ILjjZRuJvGWkbFfkw3eRoBWf/Mr6JFRbfuaPXrtYFmsuC/txTukvEuTmlRh7gcSnv4RKzqHXC9eBaoSxCI65G5ha6TWh3ONz6cHKB3PSURn+2U7Wg+EsUZsKLTJxR9YUfuy7ybPueUhk8ruYAZZYKQEX4v+BBvQXHDuaYrmEa6MPHJ66LjJ/oxdhqiqyU0+MezQb716JzYSGGY0vc+FJ6fK03Sx5saU+Zzft/ITL36mQJRoNaxYlTjGbcRC3AzfJm0eMn/B0RJJ2bpVqycb1o/sMQ4fvQSzAod2lGrZmdUyz8Cjfs+fmo99mvHLIgfmdnpYjRgJ3x37FbQzJUeyxwrXb4aafW9BONtBcE5/FoUATKRiojcU7XbY18Zq+b/bjW8pZ73srAxtuZDNS64nOKPmAmfezo0SyokritBSMi96g6TZFXUwO5he6TiaHQqM4kMvmDrLQWqyP5snZJ0yuCpABT2tRSz2s5OuRIFI876ZN/K3ANa4vKrxtQUk8eLn9jShdCxEKM/QtI4fki4nhUw6Sy5lIOy+TTr7900S305xX84Ci7mwpN5xi1JxJbljMys4JxDQUt/qOv4siRwznDUAFPmFEAudTutczUl3Y6bcsU81FZPu3cqJJfllTfWeuc4RCpJ4N0THXSscDoQrncTVOAwtVhcNCtNb3hr9uOF89DBu6mR1alGYqaNur1CckIt/ezdny8g3+XDPSfpFgJAz1qgbojp8ljG4Ivrt48qTfQ/SnX5ueFn5xrc46IcNsJr5HkeB2vYFXpcDLbXT/sJHL6DihGPeF9JEQAn8ThZwml0Ki863oDYYYEbnoTzA/4mdzWj7c1z48YTvD4qcb6ZkGqyEzifYkVf7fN+UWaeWJp3lxb6e0PAaf+7TcB92djpEX00WXVL8cLPGq2EFI9cQbCKnETyjDfNZJUq3RKNh+A9BMo9GKsWdAleVoOPjNpAO/3HlBYUm03WRZ3LEKwN/Dh47e0c1ksF2srnemB4c7FGrOCldEhI9hfAPmx7YQtT+qHBY/iFsfpP/Isl5bSbp9CQfE30kl+18UpKxJsyMP9t5eugGjyKFz8348sN9rDB2WCO5Nn5r7HChhbD2xvfIqOePkqNUF5LYq8TKUqyxm9xGJOL7cBLWtevFIXFj5JD489m4peUWOl78eI7AkI2yeYXctQzQ/JlwQh2tZDlwA6SBQIV0h/HGoF4I5KzdSeclH5w7uD8QTmMETOLnyLLbGYETJEG4kDr+4K+jKKFphFumD0ubQj9aadcCXV8t8FpbaLw+X8qD3k7shR5+vQ2dfHp77ufLtXPjWaUzP/PdjT2NdpntoqEkM9giSf0+kBQCvwWmAFQAWVhqGTdY/RgQ4NyL/sDc8vhMSLTqbzaTkFwL/EeUwBi+BKXFI01yfNa5ccFpb4+9dnc9Tl7rzRxLJ1KREKXtYTiD4CkKtzCE9fc0oZC5zAryLXuJWeS7YRFxyUZFZ2lOnqto3u4RT396uPlUBS9vK2Gr2+NhY9QQkft+9J5ehmKPDHHjhV6D7ynNr1bfN/diFz69EYcu/AxQsyNXi5NKfAdIa5QX5zTvXr18prSt6VMLkCIuaPvjvn/e5j8/qBVEs7irwS5BcnT1TczUJ+//rjIiZnuslUpYpxcf8rGXZNcfjB7ljcVnKZc4JI2XeekuSS4xL400vNkh5riyglgTqpXfkB7Yj+ZLFXhOw2PJvSnb94O1wuxbawsVb5Y4De7jOjeDwr6tveJGhXR2QPuek5j2X2/C/Kpe/DJimywjSW8x67Y9EZxafPKDH96q1vBWruREVBcrzJqsZirBHjJjqDUlEr/LgBgT92V2tkCcoMVJfPgsBEbfmd05wuSTBXZYU8fDUIj3XZaWZKjBO3vIvnQXc89WAJcQW8d0ly6L5zB+Hx7WEJ7eg4+cm9H5wS4YGZNWEGFpcLB9FwDiMQ1cSJX23+sHNBSvJa6Efl/nENd8oUh2AgJYnHLdUU7UBzi+Ky5fcdVv7qneToRQ5PZvL/Js+yWv/ZWT6+GGHmi3Wxavr5WzGQtappSyVYunW9CPl+YxbLvBu3R+JP3IRUQtP+2F9rEOef1BXbdXimY8Jh+y99zBfszPAzRDLWm03UGVyxwrH0EON8JaeQRW3fcZ2LfXtVydnhREtwxO1jWWJudW3Vqu2GQX8B4drCRNxcg2j0/yhT/U/zu3rVX8ud53pGJundm5zMLDmfs0Sg9ysIx4iyCIeWA0fbruyi20le+Bu47nlhlAc7ZtbflZefGamuHi05X563jFXPykqtFV9a8Yp8B41IzRIVs16lKfcIXPfxsaTS7yD0NsGMvH967YLeeYQBkqiATRGd3s4fqThbIgM4hA6YpsqZGhZ8n/3mzIV3k76D08hALQU5YdyDA6ldc60vB7yGsuBn29Qttg/9Pr624xpYk7vqJLFlmomQtZ5FJoX+oTzz9ZcuSV7hDs6cnmx/IZUycNX/yHhPjWxjxAvROnYQ8lfn7/Kws96Xb52uv3ASbXWj/jcvvd/iTzgydhKta5NersA2gFJU2V8WnHdJ+irRPGgtNZ/Q95RxMsOhijKG2J4TYTiWTnjyrHH1Q67pQlF3LfNEnwEMrM19x+l7H50RJ62+xxDbe82iVJZ6m0wfh8B1udjrcXMGOTg6aBWlFzmnZSM5v4x786dDfxF0SJV1a2vXCHKZ7rJ7xgsFbgmqwR9nQHYhXsP2xzxh880ysPj4qLBeh6fopZ+27/nVztBXp/jfFVjv/Eo8jQTWB8wYUinWFLJrBZ/IuGvVo8tO+lJb8WUtRYslwW1H7ZWK4cnJnw0pT/U9/yIs6C/kOzAEIT1cGxcxu6/PUP9PAl2/XdRk3yfJPw837Km7omcMw4GWP3SvROW5jh3J0nfAFRJ3FFA0+6qytWE/MZmswcfoOxNpOgaQTUaA93fmyqm+ng0u3FkyhpuchY5uEol6/7edAjsgx05btRchlpr1+f9BMi+jkhHVsx5k360s8714xgTrFmVuDrGxvs8X8Vv9hG/HbXTkPeBYwL6Bj98dPHjbGMOXdAiTDZOIySdVh/M+RwpfFxnqycBaLDW3R1oukO8wFpztd8c7+JNJUUXbEUiQ289LXlMk6C4CXkGGiz7y/nGeab8B+8WjhBGnxwNoipDkQ/o/ksGRonJ4eajed0co44Cravvyc5VPij4DK7N1h5cbzk/bH36BeaXkSA0Wgd32hUe3Wp6Z9kNIKcx4DjhuMzSlm9DZvSHumGGH99WyaEVlzatTB94vvjbRjH2e26yGPvruJMZMgw6YWIxWR0WSWhzv4QJqPKlr292EteN4D75JKtekcO0EfkYAvMILqsSOXj67QLThB905smSemaBklp1SW6+ut8NEfvmldE1WARBRw72dCVL3f7+y2MSl7yFTqL2p69SDIJEJImvtnYFb7Z8BQ/o4HL2D6fg/Qt0HNoGnovFomjESXKEH/295HIE3wl+S5H0EirTlKfA117meisD0KTkbJ3hNyp1QcP92TghN+mdTpQNgGGsukBcmUt8w85nTqOFwQbIjBUrzXfKBpfmMrqXRh/8z5MyUsnilWKeGUxc+vV8gLO2srJ4EDb2+kgqyuIbsdrKeP29ScPjdBuUOmhlmKt4wPCsP5O1NZZb/tvFq+VMzc0iVf+2I/afR27ppZ7SUMxbtczdbtiNU8W8E85iO0gtvvtAxnb2XK85HFXW4sf2ibK2Zl9h086vY0nhjmbNOya89kEnXUY2OXLaJNymKxT6l4p6Xy3YXJ1kVUvFVYNrssgHxK/9JcYfssdq/jsxmU0Ok2ngcjf3hVUa7sqSRBQnpadaAhLVGGGzAzwBlUldzwg6PyK3qBWc9q6VnC6t24lR+iN+ZGCPHTTrsL16Fcj59uAXrMGXDkVL9RyLNN8lFPMh669QHRugo24/I5NY6AN8LoNj901pxVupPayed5R/lv1hAkGthuPuNsVZIity4RrQroQmmFmgqJLO1/eUxsL4p+XTmNj3e8MlQi3C067+wPChyIf0TCMp9T6y0LrNJOCsflO2EmXaVb+zDp270l2Daxj1FWtOS+/Tq6JHf3RFC1KEu0cPmi5Mt6XNmPEwC5bCohOJtVO06fy9ToBs9gA0SWjeBX50m79HNsA5wb7gf1+i8EspHx2FhOaT5V99VcU+SfXRElkCsfmjoA741ppCM7hHdJ36iGTms1ISEfnS5PCMN3ksKCvYRdYDjwT8lDsvRQVVIvki38jLE38t4r4YvMrrBr5QBD2Pe/LtO6gOy/WaX7Uq40Dagdet4nrJbgI24NtrKAs4kRa7zFUbJDXKPLgepiBhShxlfQj7wOxpc9dvz2lVQqQPNiW+lYnzEekR/AqV9H4tmkL7CTw48z+A9fWnNz+/eSrAc6cYBd9cULRu7827JeIV0b7TN/ly/MEdJjVHuKbojlX1f3qOALPQv1vNhs4h8zO6ohu7Z63+CWr2iTW3obUL/zV8fmvis1Xdqa93UBFlZzNa+Ai0Yl3/nJP8OiMRh8XHfVguZJLEs4lLEW5B67aAqbw2sWINpatGyp1NDFKRLmxKc7/GFZMSkiGeIVkmyQkHrUxcBG27RDoOd4Gvv7gLv20JdaA+UBFtef4APnc9FtnzuW/wF9GFIrdDI5JXYhHmlrDNb38uF+rva3hIfcJN8sswX1MfJVdVU+XcB38PGTKiuIeWFgBZnnBejjaiCDXLoqD5+ZuW91QTRcjCi1MvfyD6Uwv+56bHz1wmVSFyi+6GVRkjOH7iiEd/pVvvBXZKU5ou3z089nhwurgQkTF/Ve6OxEln3/RtkeIazUgouYWIqGzIoP7V6QI6EdyruYzKvrMB6WyLF6TaeFe67FB0IOpoqO7/skSYGEuMEZJ18+HToREN10BLyzzjBGt09ITjB4ELIL/6z9CFZRfuBCL7DxeDWvwGfF7rSib18v+6H41mJ0XmljWYsqD8FHKqKqQJgZ5zn2CXY/SvvT62gdW4/Y3ijV2aqqVu0plNj5mX/NQ12X7rGxceKvfqverZv6qeODIfLDPfjKoh7G5nbH9QWPoksVlIkxGCb98NFWCc3ug1u6i5pvUqzN0+DzQbYorMCXy8P/QdO6BTL/v/1dZTjmHSkhIzpWkYTQqp5Bzzu9SFCEzpzFqhVDkHMaW81lhTrOp5JRsc5yzHDfklDnN6bf1+f7+8Yc/9tp139d9PR/P+75e9yixM1ojsj9CK+tDj161Quh70UnGb95Ouidt5Ledg3oLtEPw8pfnW2V+nRsd9Jmb24f2WGhAoF/GRsdKkA6PDuOSN9ItCOnvM+f75stjqTgnBSq1eLU3P9wxEp3L3Nue2C3DXe0GESMc/R1Yc5jnR6z80HEDnvfTOZepk3sELRh0933NGsG5ynBs6HDzqaPz+zWEcmHj0sJqkykuFc3DkF0FAPzv2uB1f+hJ0Oe/gx/ZG50Iao0xFRFNXnsBkmt02k5J9tHdt39nIvNGFCgKWh27JZwcjQ1kIJdGZYgKbqdqP9B8/ZzcsGLrE4i2y1Uza5JIhzx9Am4DOGB4mZR31WhGknzvK6U+nuJsmLNP/1jJX5byZpSClFBQj6gezCKmOI2oP+9P8avIIQojtPWrHjKGrObJseWhhhgeifB007TD72aeN7gussNeEeWpzqxiQlCWREsSduhx6EtuOHCyQjISdyjsv++UW62JoD49trqoq8kOowEOogdmnnaOwxdqRUftEMp1dqX8juHenAyKTkVveF0Sfgquk6cKRtbkyalDCzBdPtH0A25ZCiNygBMX0Cy2TlDHk6husRAhUu7VrVvCiPyeV2U90sFyNAWNCrfYP6REIJuLbh+M6pbYdmJmB/sDjAnbf7Jkv7DCsz9sRBiRKMav5ouXTa39jEm2XQW+7oSKhEdh8380jAnEEXeONyvBYfs/4H9bWJQoq02aTtYE9z46d/VcwlzozPxujf/etZGQNaCGM02vcX/Xu7mpYdviuHZ/xHF/TWbHYp0jw7Nyv3+20sAvTw3F8pz5q/tv+17imQiYoKlwgWouTHOXQOp2uc31Oc1o9NQj6NeVm1NlqE1HwfiBVkbRcbE1Jcme7i9YdwSrPDWYYatDF6u79czwEmLoB3NqVO9EArPD595eP4+vFWi7aiV0V8jUK7Ai2wFxyHBYIs55OdVmfetJXU/0A1aGvEWgxr3+avBjYtrfLUdXuWOAq3BnZ0Kw/R6nvDzexWD3hC5ht97Uute28c8UXje02V+n1tuVA/Wwcxc72L8VOKFWQvHw2FuBm/UkCFb2NMTX7piQ2G7z0Y5p/1+bEPOEq66uM7ieE1YhALXquTonhoi74PuBx+irlCGMDXkmR5Y6Gf7sGHwj4RlD7MIzQBguE/HeN20UMg8nffa4D0IbzEEfeiXHyPNLoKP+nI/WJFF1L4HjLofvS/HmpgSHWm+h41ywyX0tlC1R/YHYaIup1/ZFSqm8NHXsC26MtsVF5DAMtxcnJmvpFcaIC1k0vdsS+7248/13zRYohGJ8D0hZWdaPU+b4GRQEdPGyIqh5nq/9oBCy32Rz0NETsoDLaqrdFx/+4tTVoIaB1+5klFL9ns3MA2o8V2egs7OeVqFTdfgEv802wonBh8ofTzjo/Og6R5NkHhWGZYTkMcI+R/y/XZBoQTDx7QXqWT4a9S9u9VehbTY+1ubX2VsbPt0FxS0Wb9BplWizAAHoN1bgAO4eSfYzmvcpAwW7c8j46ouXhKCyQPLa9UDvkyKmhLN4wiqC8OiPl0cItIQyN4csrNPRy3/3wU87Wx72MS7rgTEbT3lyH3n7jxPfNUyWwqIW7uDrt1aP8d2qz2sZGznT1iX8SO+T2+ibEz7XS6vHib0YC2o8yvFuyJYS2sRhJcFkCpGysama/7G5OiyOz19yNVOkZyuLtxevR7SYGpbYMyIMZNK/sjP3Z+t4Cd1e8vcZrMeU8ux5cUOG4rpmaN5mnpH4MryQ40t0+0tyM9CSk44YhZGcXEc5FipMkjg9UpdfVQBwY/a0paeh4c4oZ9XLVEG263m+JzJJWYJV1KjKyjj6ATTJj5urUW5WcTOg/ucKmTw9NldXakUQK6UYEez6zbLC7husH0DX1jgb2ncn4LFdBbWrDv8ZwJ7ONZXB8GP07YU5AkTZnUtL8Uisai5zZVb5pj8sZQzv1TVoxyjc42eNCOWc9Dalrgikzq0QXi09WWLoZLzPvJwRScqQfkuCo5HMqcEqxgL1CyzN2Uag9fr/zSWCR2ttrUr06ZQY6Nn8j+sZ19EVMtQqRJiTHQDUfI8xAGYdlXKlVMHW7Xvnh15e4vHQrfZeMdIJ2pz4yAFraXuvSyLP8Z7ju0gxXRo4AGHgXikmXpRJazzMuxxEkT9cUI03AuuEJrcGRSe7VmSvTrQg8JdvYrIyMb622wz4IjH0KOWjp6GLcisyXpFSSCw7FdNQ9jFNWz7otolXYKLfumPyhAreJ6WM4DN8w7JCkzxanM6A71ofx1uZtRU5TiGoPNcIn95Ws8nNUnR1EG8gmCs0kjGRDfyzoTVgUaTZMQN7w2dUhmDz/TtCSIy7RXolalZ+1oxr9Vf+sKVGX/I37p+suFsmvkRK8TJDQl4BQPHxJUl7XxshKjTD1+d6pjVDfsxqRyb5WfbuBmi9HzdhZm245SgqeeB5YdtTAgI//bOEYhHGDdY5epMxeKiYJRds8XZTDzpLhXiO7x7e+bY5H7KlfOon0Ce/bQ9VjfSL2v4LwefcI5mVLvcbDRbJLcefTHAo6eSVQbLi7hHqlj/mFtQS73sS3DsOCA2SSGsQSmU2FICr2zPXCKKNWkEW6qC7sfCwSjTWEOaDYqfz8QrRehYDmGvVwaLmJXY5qiJN6eKHfwG/Qr9+0bTW0V0zW+FsQSrk9izbulnJP8bm9LNBkiqYgo4nVj40iZa4r98RDMrQqLmq1JAbcm8lNxPpuRMA/0uP6AjOvfS+69u1STUs1if7yC9tklMVA883+ZWrjsHtD3rwcgHDwevIxI0nul9FuMAuRT9Cs7+Fqg3A8X+KvF0CCYnOQY1NyKWCFxAjLFJu7UNJTlSCn6+LHSFe3MVoNALpM6GRdOP5tdlQ3IfN97BmP9+DWusaL8qJGspXVejWtAp1unDpQJ6ajtBmoKWc9seJlYbXmswjFJHkCv7ZprSr3WKGLP82ixJ+mEbmYJlUeuw2alUrWHM8JNBHjlr37qluElt/jTToHXqJs9ExSht9w0T8QVrBqQqzvkj1gvy+UhdSQ4x32gadWzSZ2dV8mDGyYkhIc5nqD9ijrbNZbe4/w+SP+OnGSOS4ttuSvrUYW5EDPMt3V0Abz7un5rvmXzSthPbO3stQpA6URuR5kguSS+NAfpmWIr6zldgAz7sNDeWsSs+m85Q/WY4ak08W7ogI20EOJwgNVf9SmQTR1oth4Ez1wz7dka2JA9ohXnbBap2XOt1+JAsYL/SZSGfEDg+9SHUeRLnGqrG8FKb9O6q+LcZsNZouQkyMnyhi1CZbVIMxB0xjXCOnWACaiVQAo0hH9pIUcgknffN6Jx/NQf96wZwq7IcVya5s+SOiorBB3StVwIaxyjMnLbMsR5XA72smg6+XUErFWA98PT2wyRv6b05X8kPwD0xceMuzq5EbNQG4yeDVCaUiM1RqPy7E0jBN2STvXaBBuVmxmGiHa1R/pIAwTdnJsihT60a+97hlXodZBlKmBxJG/+WhEUrTHmnwrLAGpkG0Xw/61OvbEII99iLf+8k0ZY0Mii3lISWAu04aR1Oreei9nW6sGUCeOpDlmPnWrOqhc9RJX5ZbpheohsoLzP3TxCAh2sqrvw6+H9EIcT383v4p+wAzlwzVfNVx7RI5k4dgYjP+3i8xVjiSj+Z7oARGadSLm4hZoLxFh98Mdi+JVatRTSEVPZ6kdKRzAxhM1nWuBB/wPSBpFhRaj244w9ZlogpeKDxSoXxbWI5P7Qxed4VO92vIUcYSsgBZMo62JDXs9q8UhLa/RwGfl+TcsJxuR6aB4tlKs+5McuJ1z0u/XTdG+kusnQzb47jzkZ4/jWEiGn4B3GI3az4GLGeraNb6jGnpVWjWscILkqF2au7gyevxtc9dSgezwqOMdHZeJ290ufzZxjI7JWwDI4PKsnPB51m+noaqLJESWFNpj4U3L4PC2adjHwcXZVejC6dNrpx0KAeF8yrhCnm7MxLv1sVZMZmz2pak9IDUvuVq2Jx96XR/jtzrRXuEdg4HqCrvwqXtHhOCmuleQVSSn4k/h4ZPcZsJ6ScrHCNJubo44r0UVyHaIpTND3Guj+MRs8uZDU0oy964HmBMorDV2boCV8mVMk/cN5I3Cyx6GzyyM0ZejgQWuVyaRySf1h7k6c2JuIMN2LxsHMorVdgc6GqRlxcvlmaK3VZGe2m69bWZqCqCJzvGlABOsbuRJrq/68qFIYcfn3O2QwhdgDOoZt/t9QuUE/AL1K1NSpKjPPVBOA8LCbHiL6Zx3DwqT4/EL1FYwWzGzAaA47PQlR9TZAEHN4RpYMzTqlz00knfVLSqIJ18uo7B2H3tNejCVN7oTvisx03joPqFxVCc5QAO+YFcKaLrX3aneW1dojiPJukZv4q+VQnlp6X0eJ5yv+fjDlTR2JMWEgYZ6Mcr5b+OEjYG1hXUqdxHOJ/sCo4Xl0tOSrpYWB1oiSBYb9R6LRkBzQyLiz/PIuMT3YS7HfpzBsuXOkbTOGB+iyNqd/b/uEH7hq6PKM86MsZ5YINbNJibfk9yQTUfycgEF1PP8NUDfepaNJm6H9VcGIvaH96GiEch4jYpLC9/2pCkrHtHXXcytRKz3zFtlgCYpMkJq0cD8MAJVlfV1iwFatPJg7geuVR0F5ykp0CFxewN4UtiJlzGvP8Ty7jIerDypZy6kNLyyAbMUNW6Ap+zTlW6s02m4xqSVnN+8PWk5k5cGzFV+6kVcRmCvxgDWVGkjp2vqKc9k09eIqQB5pCtTaeMfzacPX+E9ZlM7dfrCDYluiVnZeWwgu50BIA8BkpMgyV5wQYh1RmQnyFdqZh89Ma5TWWnDAsbG84nbmoJOkmlC4w6OePmaaxWkW3MyHfjr9wzwpzAZlTAcjBySyLMvGMXlYfcC7bHLnOPdtECdMrARO7kyZkxk94vh4zkp9TxiM9p2XLATpx6xTxiZSTBESdMJCIzL/ANuj2SnJ1l2uW+lYQIo1DdoBu/RyxIsiKOElUnnSr0KGpURcpBfRJWhmoZdR3dYGnhGiAxPus4Q4MnzCKnlkqmg/EMmyNJmcxJ3CA+GNj4jwyRBbvw5zMMVAh6g74RVfT5qZiYToPWTYxTJUgdAD96tft36XC3vLiQz68Cvd3xEOxzd7xRvZBGMCnywtJ1G5dOKsyZZM06fkMQ+sbsejXzbvA9mki+di3jPoXwXropFd7nJgzhcvYjDGy8zwySoAVXOeyZpm5ITXKaesZXqy8ZcE/vV50E2Zo4SVCOD6JOsPxBePuctv0vF3XRmENDGtR5+18z6LRUOWsWK1DZ4NXR8N7S6rfM/56zOtmQZANzsHfVVQRpx8hYm5720ru+TTwH85+4n36rMcUL0vpNxZzmHPsKnEaH1CMsIYTRDAAAdHncFIKXP5XCv2Edida5PBuqlHUT4xhgrPP4emT1Z9as+F9v+cWKAlHCyUl990z13KtCapI/o+u8Lc0MAsWGT1UUAzE4u2Ag2RpqTFrqIKykItULamoip4c+9PaJGoEni6ThffMNFgR172xZVvgXRz885befFXQlzddSLbAYPckXOaVdymAaDWa0tN3yh+jnYrAKyZkASAq67jWzGYb6AfqjGVFhxrCHExwIcazX4KDiGQNV2YJeqCS17lS5viVbP5SPtmQldGBvdydt71M1ervSsO6UpwGXj+EGIyP9C96RS5wU3jRuLrbVQw517xOMCTpPMifwveB+W31zgm1aEsNU+FsFwdQYk21lTRQRhXj7/kYDunaLzIvjfM4Ng+zv33WzlKMqjilSuzMduKeCfmKFaQUmnqxTnDA/YZqNfzF8j25B6OsTNc/g2zB9NjaFi0ZO44O77klSqt8kE9OeD4dVftiIWvj9xbbo82zh+v7d5SfcGqpFGcSu10L8CtSbUcdZToEZo6g0s3uDNgdiBN9y5YzlBJPXf4QbWtKgYE6tCRbXli6zcbDnPC86pK2uUNPnuRsH/etfxIrVHTJC+yoKgONX+vsJvbTqzyjuiiVUe4IxN5ChNk5ngJW/zvmtQpxDt8I0nGoiTZGOd6PiJ4yjXveNLifiX6YqL4usm7wG4Fzb7/Y3+oM8+gqyx4zek1Oq3yyVNMhRBs/RNKa3/IudsPRUJNfVtDwHBN5r7/lIVYpoa7eIi0qel+ZKbhZW4pNee7PC7L4tbapZOzYQLDELJqS7DShSG3NWLy289uUBsAwVNAS+vQ8mu2IVGSwDsmPgTNyPXHSgZb0h7NzE/iNpqtmE6VI9QvvTiXGgxh1Oevdrj57TmWizn82mOXUOSdbQCRUc+iQDd64qxUydDpyo1hpLfWZPavFKH9TG6L1FksusVd+M+HvouxBUwvQ7d1XBwDTEygNQZRGy8m9YZi9bMnKjf0sIShuCWxCCYXvf9GKtWkPNP8dqHo0uierDYK5GQsxO8BxvUy8ypEL0h29E1hzSUBBCsPaLLKzdaNZ/vyj9JlTba7IhJoA9YCXs5cTk9nUx4O6lLO3ttPpUv82TWcWzIXlcr5M7bAvRvBYQ7UEAPoyP8ImFJUq+0XITuVBKQmRHPLzyv7W8nwaVoeCcfi/1rc+LiDoH03nsVStfrqSTsr0lht8UcBcrAMYFIFi0gzWNIwAsMfE2dSxDvHqv4+9yLQrI1TSaPd/Ew7Anaj3jS/tKDSnp1kDywIaszBRgfDAYN6a9ELDuPAcm2Hai/O52BPekY6CLNCM7kA6kP3FDL0rE8EGvwl5BQkJPsoWlqFG9BmFNw2/CwsS2e9fTW5qs60g26giGuZdCnC9R38+mekpFoI2vhoeXf9jYezY55dP3acbHfJ0tamFaRERgqhtoaV04zgq/wnyRgpI4oX6c718XT2LcjiMp5DYfTZyP9sDUtznLhrhsptpelzuqn8IBewoYv9E9zgd1fo3/z77947j+xN1uE9JZdbD7H4hzrtt7vgzMU/E5f4qZaIqfDOXbSd/Sn10NK4vOMJ0UZIiVxeACLmdg49qrNIhzUypnrE1Pp2UXlXo1e8S7M/j6xP0NrhFLe5jrcArOJLMRbEjxp6Z+JKemqTatjNn7Od/AjC9OTFixwzhxdZ5Cy0MYGxvC9vmgGB5UUCYh7MUb5aONltvBrivT5qQ9MOkYy3rHx3XXTAUOIu9reIbmcXOzc4a8/4E0BGR7Ros2/cATJ31Cv5SgJ0095zcLz7o69JW3nGMHVwoGxGBxSZqVeu6GqBt54kp4jOUfgJNXug1PPIJgObQMCRvfJEfwpSzu5pPn+rdyquO5gGHvTIVA9wpNdW7LcpENzJUV7Z8Z0OXl5jIS/eIBACejxrIC2xrXvZ//bSIVKPt7pkLKhZWhMhei5zPluGDEbCU5hdLo02tby+XwnrOpf3nEFo2DKZEvvhW8KPHITh00sOljWhTsVlnB9vaY2epqyJst8dBIHtS+dtbB2tPvHQybqHeR4THZNVguEAAg2e/1psYwh1OvJRc7Ly1+gEqLJy5MSRMeT79XuYs47Peq8QbjZagt46wHI58ZdHw/a8iWlDU79oFmgJjIse56CyE4uszQFRorRXSC9W2IZkKgi8BQaPnjyVf5VWdHJw5iqaSEEBnFpcJYCQuLwwdFSE/fbcWF0p/LKc5QN6d7eVpWJAeDxg6jIMufi723ExOGH5DeaLhfBopcq8DWdlUCcr0Ncsf3BjnE0Tg28YKDKFSh4B2dnMR40945FR3TGvW5CqOv+g2/2cDbFykCSL1jLLUbjthbwzxaAOXZWyTJRaZrnibOnhzDwhdBqn7rbSKi+I2d643hYeEZwE9K49fK8Kdpz157jrIeNDI7iq+BUZdZ4X+/2tfspA5ZkxiqOjVHWbseaEmoxK2MMAxFsEnIk9WlXd4wxR/7PWikhEajvcGuwAjW5+ryCCg+YCVDf3UZaczgYj7FfKl2m75OXWsg5dmaJAI/mIt2gIi/9a2zTloI3C7Y3681ImWyMWYcliqzEACkVGL9jRP+jIdLLGvuXFjWofGJ3dy/yag+N7Lkd33kD+o/KIf5XuWf/CB4h2QOZmOp54C5XfirAS3QjvzGjPK22LpLo9wxot+rytVIdfzQ2rRU0sK3CMB1d4uQRhNrUj6at2zqZiscoQeA/32Zcd3HKGSSS6PyKhmxIk3J+Mk8iwgHt1KyGcD158cJXRKZlA3nehb/YX07gPDJa9S9GIR3J7V1q7Y2U3rjtuc5gl109eMdxge7uOj2eiTy7dO0kpQNRw4uWFiYqBx1TtqpI7jgA+3XPWtDkZwJa4NdbvW8Hu7cvmdH34R0f0p8OqEvngQJo/WPWkGnVqFbLa7QqY3e23DVQUqNAUI77xyxs/w9J5BRb17ICEHrMFT4iSE37sTsHznirRQ28KOLVJwUO8yHHfZnZ/7EzBv0diFAPVBRkCaJmXOmTg2iMoWgbhZg7gzVL+WrgCzmS8nvXODdA5JWbkr0VrNDU4oy7q47MTzKFAVPiBPB34qKGzML2a5EZ61OGo8GKKKVHCi9bSbVT1suSVIzV/gTw3i9hm8YO6rrj7lV8NHzraya7D/f/dmIuZPBiFUGNNhHzvpvd3D7CZ12njEEQEOK3IqdsGtbXt979YLo9tp7WhJdC78/zUF/kzg1gmaZGz++36qhtFljq/1v/NZAHVTHCVttFLc1Qyud1bjoF+Itx0Kmz3OyvOCjKeqRxp/GP7wi/X+ismL0dYMhKtiZ9yo3tMKPzsCCfPGOemEUbhuRwAq0AyLMyYAtUJb5rmRg/DOGnlzevhWY4IefWCJ6jCi2WhPUhIRpZpMpQjS/tPA7rZRwcLspSEmaBpakNqG2LUYa4Ve9Rq6hbjxHKgQHHijaN0+JwwJbTvnughIZmZC01G+GtFcmF2Y65A8XG8mRb47zYvO2iT4mgpfcSDvrZ6ElL2TEQLXveCQazDp2r7VyaoT+8dWA7MtJzk8y9/ZICxvh+VwoVK7xUf1tif2lvtvi9R7A5m8AuGizLYmNWYuVEROqfA2ZmlwMZxDBqEuKi3zQH5WICVkEevsVuj3OnRxXoJ92mjTt0PuU/vF045MiGWrfz+WIMKdduRUeRFh70SXaTu8xfCValeEGih0qKyio7Z5mHf7QexKHS018m05WkN1VaNNasAaU9nCkOpx7OTQc6DVc+/aGd7b+kjqhMHAiS4oVfuPgYHyYFse3GThIPN1LsJxc5a/Lks0LkxQD1lqxr1yT16jWrVCqjPNoyPyYuTax+G7C4eArmPHH2ddRVz9OWShNiZuTPpXLywEMT4zLDoqMQ4XFmqL2Svk2uqocQi76P2di8u9Xi2Xo7bJbAJwaEySSPCtwBZ8kqQl0Ln/mhUHMEsaAZEK9/x7DFRmRyGMXWmGdXgvXXZ/7NXoFwSUXbGS3XwjR1o1I7QpgCVQ4iAFQCafhjMHcJKo+2S8preT8VooOpx1pC4Z6SEof/NVRIc2FIz8J3qns6UlSIU2c4O2pGFeIQKvwI7RRE+NfB/yMSXb9k/yJBBdVxmDwJ2pH1S5/lL0Nx58ed21fLYVIqijbmbS6K3033P0iaBzxRqUAtyfcERmIDYidEXc2a75fFUI8PlIXfnV5GPvgJx0suRAVD7oc9EBLhdjbOY0ipccuMbECgchmTckPKvoXPPNGlRcCtC3xWUcujYIGZqc8I+4oxAQIgTR+1S7q8jzIbdMA9gd/3D7AVrg7fUjjMvWTEO2vQ5mdo3vPpACNbX77fSxnoxxzGyhakYJiFHTBzrlw57zeruZPrhGVpARBFVIFiJd9wVmSFZ5gDXbxiQZubAcqHm4R7smtiN7ozu12EOkd9IotyXtUobDR6m572UYjBmiG1QmlOcvNOM5NHk44rn906xtcrv5B9nu6F5de82QJNB1GTHBaDHy7FIjTcWGnX5T801Q+piFJ2e77khRPKp6uK6Il9UGMNGN3o44OFe0KwuaDk2mMGef9aw9u3xVk4Zt3JGvzBUdlK///He0dVTGQDaka8H6tTQSe7aAak+1440Oq2aruxiUmWF2vYYUbLP/uD6iOqQDAkU6kKPWcgeqQtgi0agDwqM16kv1TQNYIP+sBl16vjqr0gavG9rfVotlps4i85ntR8Tpmq7jmuNrnLpdYQyVx2Fcy8IoPEMn5cJRJ+MGe4joGYDtk11uaYxHW+DRdcn6O2Z9kpBEGSS9L9pOlZ2HnOTncJVGGmbW/krlXbiy6BWaupGYtqGXW/UpcWghk3/rjoCw6J8YPISDC9vtdrUKntnV/6aB58fsPOnYpndefdm9c6cY1KlBfN9mQfA9ZWeqteszB+heY5BEHAGkikEveKD7amXVajGSNmw2v/RW1lJUzw5cvUwedqeSUcrC6PHWGbvcZHS/IoBEDuH1YYIAjZ6Pw38rwmSXJN2kb4ZfBR98vLT5JoXFJHMXzbbr0LlRXchkeXVoG7RR9oAnVhM08kpzmoq6uEgQttPVjYIrkj0soeMmatrxW99JIGpucLEWm9HUfeXvZ5TZ2AqWg+ctn7Bf38v+aRsyOjv5ksQVZWY+0q5hcSGfNyy26IC9/Axb14RbnpzcTISo2f5wC/f3J4z57jY24MAe80krF6PP/wPzgDxMhsm+cLQjb+G28rB+kwc9d4Fq64d8jHeJqQ5Jc4CVLwthkU+GQIjxceOr5ZrBE2HUyfqIqXmTEuAOOnwdj3JZza/Oq0T7j600jmFU1/9lZgRTbF/ZZl286jJcYiXEfk5jX4/R1egcQMy5jVFB9Uos1SZLKLg2CJcZdSFOizieKPtMeQ6jgqet/clZq0cTzI70y1G8Y0gErfP9lm8d6jebPA99xqJ+mw9fge/WZVXFg952tqdkxs17jnw3NeRKde2KG9Pg/RvQSNWJSno6bMd0ikbaderfOHu+3PfPDVZoS/wGp42bbHTzdAN9DWbHxgDxVZmrTTFeHNovsm9ePYS0OF2IiAlL2D3gpCS+J5qtK6Xd+nXYrDpzkynau6uf3F4a628CyE7KxX/vwNio2nmQdj8pgvH97Wv8WaNJ2L24f/4BU+rCOGHdxMgyibcC8regCI0JcRgxj2UQ/sb99mRIaLBK6fieesro8x07/kEq4tyIjT/0EgJ/mgjVLq93AfGoMCcUWsTemITMTwxoQK7KUexYQC1aItxG9AV3maa6zq47Z/m02UOs0aavm0f8WhkG2hpLFuwVvYLe1wdcOy0YCX7buAx1IdctB/eIOeIvGzyp7H9u/E6sUZuzbJoMDI7tHVwlWPriWcGJV8DZuuLZIxU5jtAIZXv/8EzcXvRA1boY4RNvXTfliwvosPdpXbPsrDnQsouKODMVAm2H+YmnB5ZK/gdpri0JZrv2X9HtxYq4MRZxqQwdeidwM+oRtcBUOlPa4E+OhvMAOsUNMtPKtQ3mv8OCOB00dai9ORC/HKFC1YvfeHOvMRmgbscLzzMESo82vMq7WpNAXXRfmRnE4O0sXsPuD6a6q1fsIZ0qMRhpfoycWhUYpXL17QO1s1vevUl/5Lj7Lj/Ej53oQ8SLPt1bCv6VuHLBlV8+FkldkB0b8Hefwo+KqhK4mJXi4cueW4+ZKYoP0xIbBd8pQ0+bWn8Qm1bTHcHEnn2yc1Vji9qqNRCg0nk6dYfPS3qXxbw6XyPaPcBMTkTq5tav7MSMNjHxeG/IxJB2VQYihD7IAuPAzQKLwIxnq1KW3LWegLLfykn5sskstPHDjfsU8GbppIlL8wfU8TBFw8Aq/mM2hHo1Wr3X3VQfgfrD6wrnBskB3sESfTro32RH3uT48gos+92dSierMmOfGZmQmwtli0HOgRAjjsTuvxNuxA5nnx3gSXWWGqlcNEzcKFzTM+MyKMUsipSmoSXfbBh372g47+nLLndoXzRsToY8qOnbKjGf3m32IXwAHWYGU0sCFRq3IMI4vtBP6pLTKoHvlF4Au1StdHi3zlSXL2ObygOUQp2Wdv57+N1dVBmwI71XslX63wEnL4vJUlpc/hwj+l+8AxMAXFnqSoKxyft7R9wln3+nFC6gor7gH+qLU/sirAXMTMm6iwV/QIpWvJlRuvsYCT2bNIdM/TtwGXcMm0elJr38u+z7j8Omv75FJjkKrPx26cBHoLiAoKHUaSrke+CTeBhO6OUIxeOlikVmLv9dUVPs8xKKxKi15YzxEvM7d1aVuKkxgI6o/JmV7tKseXv/HefNb1PaQMX79z/pqzMfmA9P7v472UicIPN6TPQhtIp7blhhsQ3+CUrRBVYTqwr8cAjDBowoe7dmrxVkhzZVbYvSrs02zac89zgDJxyUUwPFPo9WsGIn8kBXUy6mBsPr4rxscOj4mdTZq4ixCfI6TviM6gJyyLTVcsC2JfhaHjjczkTcHSXhBfchCtJ6L1JneCqvYwvEK52Ctakf3F9uJfiZ2bi8CBYvR5GJL2Yvg+LsYx+rnQOMtV4+BjELDyOa8G94H8hzr5IHBrMn7ITyhtgxbZYJxn6yu/aiqOF9qM1loE3Z4JXr3hHSvIkXr9f5FfUKa4n2fZs32+UQPIEfj65URAlkKGM5I4uvnbbvT4H8/2+NWPD3GUydLvPYmLLA88Dye2XJMJ6i50l4p1yaGEyaNyBZrF6K94oOyvDTTJEvpgvUBYq+K9F0Ysf5CTADfIZcwvZJU8+n8KPqoEK1Byn4YoS35noE8jZ6Qmw6EvZtU5ZVcy8Tl6GnhuAZz3H7HV0iIYxikQi5+L9qK1GIIu146L8Go19zxq84NdLnNXRHiB3RzWe3zo5Mc9KOirBB87pZEmNOyJk1P40AJA1sWXKwmSph32WrdhuCHhDe2DUuCx3aw0sO1ydXQZtW9Xt95i6t1wZmVLa59q9arKiH28Jr9O5jpDZ9ilRuHVuWTdE3MM4rLQNzBahGu3aZEyj2gKPdHNMJ1xzE4vIGHQ4pq38v2A62Ex58Woq0EgRgTLE89YFZlMWto3t+7XPUutoHipXHpY7k/uqSpWifhPFz0l5Fx6MJnYN4gG2IsAIeSorpanCvazR0pSZOoCEUQVDEhhsHLGpjX/QFri4sEaz/3gK1zc9ptyLTH1bL/7c1KbnbG6A8UKkjIrof9rEBXju4gRhpnwt/4DDms0PEe3Ukeu+7xJfE6cz93X0tTtkedRpZX/hjPjzr1N5wjNG3WlsIO497uYaHj+bzFMhJaFdr7O8Gb6zFpA+6lzbk25XCT8vF9T4w/Ucfg1+Slqy4VW5QwN9tffsRVW1kusxHj7ik//04RT1F+2otEbelIhPizf+zKLksNixBxeugTp/cf67+NfFWnso62T3qk3MvUbbNEzsY0tB8At5qP0C6prP41YiAea4rQDgny3OxtOSGfhVb9NNtks2zPg0F8TGp+dlVFBUyBlw3viGIWY32KUkpR1WSTo52+doN6CVsUpyPIHTxZs+np0Vdr2x+ppJJU1vwYdTRMMRtJwig5HH4G3UDOMWR2tbo91o8MFdck3BwfoBgxSE9q3kfl/qqiXdlEyBE/htYi2y+LwuWkVtIL6KFihrsFLsXco0fxP/ZdPCjfePsPZ5b6PyU5DCRUh2RhJt+vb+/cizgNFV7l1376avXc64B6bMf2ZYmary7x5NMsfDnlniLgTeQCO1j/kdLixwEx8D4AlOhL5aMV+fuamW9DAFntaE9mba4P2fsYlkb47c2lEb1rwE8zl+v0mP/sqVCOZqhyNFI0cUX471sALpIrLVmVzfS5eUh8ubVDQHP5oM9erH31isxm60nhVRVBF4vSwVDDcue9JxqrCh4HjGKLkZ5zKQtPIOwlji/DW3/K/uHca69F6uRp04O+gGxCF9gCR2cIwW3+TncC5Rc2lq/OrTbVfSCED6X+fdLlUtMaOtBIHhDJDCu+4X0UO4IPLx7x/X0Cs0SCYPY63BdJxWLS83v967HtTqpkl68UuSrORlQe79tPaM9j20n/t+gd2qfHXUauqTwghHDyQVkHGEgv0I6YkHmHHD0er9JMXUths/xzlapIFTQkxZZSDk7IAHAu9wn67FJ7rDEAOP1D6UDa6moh3txUtcG2Bi17UiAWcCAAlPXoLzPXAFdOvcdJfC9uc/kMDHVTiV419f8wG3i0/t5DtnMt0kvHdulGmInX0F9Ojl0F6RnFeZdqs8rxtWvRdK5aZDh+3o4pvF5gl8OztmMSGMB4cfakpy0xbWSGuBogDe/UFYDS917LGvxESWdbSCgdxdjjF0U95kR0rJZq9029xtZ5MV6TIYzEeOJBnhJa/N3ptbi2AGpdamTrQfAAeTciRqx5TA8a4z1f+Qi+DrjpxO7AvL2IZe3ZkkYseq9HUAjKmiMuyLyMlp8iXDoL8QhLjMOQcs3B4Z+bGwMfaarJtqe3ws937t5cmFipQGMB8DfsGvF6qIxxXRDmcyZs7gutK+yel0+TZBnSZeWa56cSqje40q7U7YtVVDJ05u/9RxVzyO0F/8kGkbhSKfet0fMXz8570GvHdcwdAsPid+JGmg5Ga8t8xuj+Dr3ksr0YeqiSMZ3LY27RfSDG2mwYQXAdaIghCNF4tSGN9Soy5oGP4Qmwo9zCATYJncpUOL3KHv83vH+ku1lG7gg30rTkUvth9eZawgj8cf5IeOhrpXnGg4Pf7g4LDPiFxl0UgCr9DkvUvhCJ0L63lkSDNmWzvORbdjTmp1nN6OuoK1JxjDLJ7EX70YwOjL5F+CIM62+sLyzZk53McZursUhSPVf6pRE2QcwNwUpSWkI0haDa4c89qjJuFKXDntKXtw7ldUm7Gj1B2vfAzbcJUtLJSH3IUYMIJBYY5FE4gjkq9Nh+hSoSC3FmrJ1Qfa+RLZNEmk8RRrSZge4Z/ipF1p7ZUobhd+GNfw2n5ULGGqUWtAzHTnx/HZAf2kqZtEZV7kXTH22sDrRlHVk5bOM9bf/Y/dw+fzBWkSwBwuocvxqFTJvugt6Sk6d+eZu60aM9RP7GnG5+WkXqUZNu8UXq8r8AEXFWPGBedZ4DYaueLlSl9rWvwkt2LfbFcnYmAx8PtbbGPuJwLoZACcLoRBx6YzLUaUVYRyY3oTFwn3uxlY3uuOU6vRhUxooL0z14BFQpRWcmz12dFUIqz6+lwz22DyVG/4xt62ETCTn4sA31P8prLs9ftH0aHR9vDjItf7BZo7SA+pDnqe20i7CvXidLz6wWe+1N2mryKFY/QQ6nYZ3FtBrGVx65QBwb5svagylXV5pozJIOEjbklaKcYyLLp5GGrYtUeNla0pEuKcFIcmFdnulWR57xgwFOtj3YW6TcC9T4/FJ9N38rVTuSamYxg1YaPbRLgpY3WBP/XpBi10aVLguyXb9vWX2uGNtea0NUWrRQniFWPofOydz23G/I/MtHu+80bNwS/d1v8fY3O/+1nfCBiZZm8xCew1+pNAZCujiauNQtlG798GXUt2+Rdw6qiQ0ZhzX2mPlgDGzcdqAWbmzY1vy5vW5VaoviVRuxP7QrJb/93TwlLfy73nfcmybpnf3b+3c0rhwHSlwkxz4BwJG8zJugLvLTwvhpb59HtbjkXTOEaf1zUrXoyUfXJ86KnybOxnmvzBEV4t1LCoWhttV+FdZJhqR2mplN7h7gnd2oYdveTV3Co+yWUW2O2s9+EXBdj1smprJg4vMi4XdN9iC11QrGinWGrKTSnuqoPBGi/eXbeMQUgDgXrYfG9MPcZinDI8wI7khWeqGypByLN0s8VAq5R4cJbGJEna08B5sNvh9WwSdSs3QYAIf7FIcEPe26mZQWPhI5N8m/3BsLnG26hxD3fr/+6epp2jt2BepZJoJoI7yV8+dlF4qypVIsemdM+rsWwnU/fGCwZjGaYRqS5almKn8q5t89Lb/05IZ17h2S/0DobdR/rY62RAwyfhlVdIn7no2l6rmiBTvuAV0BmqzbeIBdfKHJ6JIXv0/QkxZjUqL4e47pn3qkrr2rHxFhf/Z7BBIJf4Y2MkbwlMKt2xDGenPwmjgUo+9FeVAmyMsxe99mfIDWQSLz8JuqnagopP42F/TpG4T29TYh6DswG0syJmvp0ikauEsTcatXcsFApijHk387Y7PvfN2bTVJXemUCWqe6KMr+5tZdLIKA0K4y0+3kmMpDEKoIqg2eQNTH1KKCx9Klz9K5+9+BuQf2p5T6Z6q9cc/BDEq27FXQJQXf3TaQdjK7LPK+/T/OxlSo0uJeHP5ZteeRiteDId7zB6+7v6hKDFGfjN3THSfnJ4obkRgL4Z0QLYGfr4uJtXGcGixfzUiYl3uGMPXzWxetwb0zhv2Mb1oj4G3Bzw5LDtpNuL5J++7NMGPLz/85TisiBh37cakk2CjnHOrcBSBvUeeJEx72dxMzEgbud//CWyidD06Bhc53p43jxs1I6U9N+GzPGcanJodwNKbleQYF1/5tbDaQX9j5ldyAIBzXvsH6pYJ5yQzLnCQ1wYoo+b/iacUPVnFWEHN5MweKDSmBBZjzbn5NdhjoB3cPDFlZkrKM6FQ8IdFzhi5bwiE9n3SStf904obcwjE1+P0Tan739dRiWeE9RTH8tJjQsAe941b9cD/MiHGvmlZXyO4ESm5mYqZ3Pb1BERxPucq8yfPrXI1fgs2/h4PCAIznJxtQ2GVwqnh2Rg0I3L7Pa4o16T4zZvHe2PPBWGvW2QEVcMl8tMc0S6GHtlrLt4rsWDRRvNdgXLM2BQbZmvP35ZWlCClRv7QpLWQ8harxxunrrCpW2gQ1SkPFtVXzD783TcSEnmL4XJDsOzTlFiN6yZGG0u8dDcBgx5Dzfy8yO+csgllxgWfAq9zgeB6Xxso0GHTQycPGVEHt4e+UrZt+2Th4shXBjsBIcvvID+l5BUlo4nVW+PqPG9LU5Vx5quPDSu9Ks2dtiWlEeJaUJNFSljNOxK9qTVpb4YkI7YUrCfM1MN58L9Pw3bqkfscPT04WdtXXWFRe4Gu0FJ8/1F9fHoUu3GEB//OrhdkfyXbdZ8PKz+l8TlCi5hqQsryXCUEbchZAVHantJCqlMKwMC0Y2N3fYunTVNbu65Q5yEer3wH/fqc0eynIOccZLHFGDyyhvGMIu8Q8a86BTTBGYB/IKlYckOPcU8UA65+WpJBIflo2H+1/NOVL5WqrsU66ljGU9O29GziNY6oepp3SnumenOxXgTYjSoPr0h54Fotn8h+sUxTXg7pvyWgELTvHcNI3rz4N8eHbFV96LbyTHWRyjEUcMdHNqXPoyEW3vjl7p6S6yDb5s15vwl8DNv61MO21ObG1iDNZvlQVLZLtuOa6W4gSzfzguPQCx1bei2/DIyrl2ZoUmVHjsnHQvMfm0D12DcYHMrXEBqGty0AA5j8u3N4O8Du5rchLe7LMzCLcNDOLGZZ9m12KCrpA7ZlKaT9ZkiZuZM1IJT0T0X7d96aGFq4WAghX4vvF3VPCfg6EpD8lGqhBxGFHTeYV8HkWmebzbKk5CPFYmgBQgvJaOIj5Qocxyd+s/YUQFOqjf2FRSJEhWLMQiO0bRJgIni/X+o6ZZTxxocztlOcdSLaVlh8W5IktDdHsAtoSd0Pd7m6lbJ1a4TVrOIbg+Zr/LwJngJMxnfvfEOHePCCovgGLPzXU3zz/Kq/9FqMMsLPiEv9utqv2J21gRwRb3xub2LgGd/vxQwO3Awph2Y9tB4Onb2ZLr2R/sS1lk3VxUUZMoB++Nn6Jfm2kyFzMrjJUu7sR5xk26nIsuvAcQjzm9PnFi3ybQ9EMPZIzhp3ZMdJgfO921VgY0ygWcTzjfg5GfXTjhCUak/IRznEMdiPhZh1fnx0Dy2gFiV18U5rdbkGqvvhhg5+pCOJeyIbzFYw8nb4v8qqo3WaIUbmeCXaegbLD+gE4bIZOIyYDGZZ/Lm2RvbF6K7gzfdQfwNxfuVr0qtH9FAc970aa/xHDhn9bYpXveeWZyc5w7KGKACcdYR3mHdOcLGtPKbCYUN6/ktYVURf4Ns/EwoDawnkZHDB7dqj69vyOxTse4uSopdK5EFwGsmdIPLyCrKMOgGfIUS3AFAxpVdzfuoEdBnk9a/zWFtx8UKHplVH33PyXUh2m7tsex1t0lGhIhQzIxhPtLjgDJ8VfFa2UY7nwBs17Sop64n/F6A0jjW5nBPDbkEJ0SbntaatL+SvikzYm3R7TAlD32q1HYDN1VtD4wiH+xWOuzd8/ugShKsBAY1jT2+Cu0sqqZyNN6e+BCWKBrfqBof8BjXnvXAOPkc5w0i9/M/t3CSuTXSVyZT+IwNjNJP5Nzg5/AMPcFKP1q3g0+nhcYnqmAAK0PVmMZd9JNQwAjih75a1SeCnR25RP/cl/90kUXp8CYbPLe+fmbF36ftqS0oM+ShOMCd3Rf44bvhJ4YS22Wu6hRE0wFRCJVSP5COxm/2asyol/KbfsWPBbdgHOwMnHoMM8BlG+MfbT+5qezMdAr45YXpoNrwnWuvv8mOP71VX2Rmc2p3h1d0kyRPuOLan6XFEw0GTgYKbSOt6kufgnQ/z8xrPGk/3uGgc/utBzSfLqp4+XujNGfsNtlllBvYbTj2So9l8PpEHMW8jXns7Yd30ZvsKwuIFfPykfN4/XeciwL1OsOFdWCAH6Q8SVxnqwPhxYAgTaDif9ACLEHbmyALgHBLaTZDAqO6VsnsczZ+UsHAN77DEKEQv3hnT7k9tou1fbM7CAcTPCkmx/85s2k3MzINtNXmc2dqlQ0nGJWJrMSf0H4GYOxhR/1SNt3vTTMTR7xai1W/LcFhF9VxGcMJUG8bZP+tEUYX9rrrtOpW2FlzpvQgVox0xtAy0Ju7TrC3RC0o9usZEH46CSCNiLXn/pBbL+HZLrJhL6p9cOU1/y5AE4/jZhaaDS9vg768q/iArAmFkv24/7JH0uhmU587/QG+0Jp5Zb4KTj4WI8fvysDK3F18TeIqgx/LzJabIl6MqumwOp3Vc9MJFmeJF6Y+Gb8urWn5VrLZpc9O8J3f3wmQqb+HtyB4997b8nJSYpS6YiCNYhK4POwszfgvRfGlA6lppQWoUQr0CIK4Dd17OpLU9P/K90sTG+RTYnWP+Dh+SigdA9xlzv7ZGi68+6xPXMFAdn9e/UPNYn9R1Ps+rJMpx5h+mJBupVWHFFqltvxzUYga4X+6fLU1c4Bs8oLQgpVTo1BlraYhpHLiWjVRM4YTeBUUW2dmCJ83dJbO33SZjQqBSmNWNB3Yg7O9PyH7sGwkrUXL8EjQ7klKLgAAy0KaUmnbxh5WpI2oR4Jp0Ckz0/ZSK0NbGfMjRrEpQWYttdLBf3aIl+dXm2/UfhDD3byvP3Bm8n0XrZYZevNuesCMkUdRydvT33W00J8bP3vwZnRZhiOkR74AR8+L9/Tw6+0XabBXFhQL8/QV5Y6XexNtRtbe6MU8HjG/IpaOIvb7Qbb4NFN/FZzopoiH+xrMuGILTgYmP9NnW8a6WX8BQYyAW7bEj5MpsmRfUGVvrdyXpEC1vHv0GnVaPjOSxBZCEanlkEJVmd6p6EQQhpk+/0HFmLb3yPs/oC5ZGi2P+WpJq7zX8QrkWLBPpJ8F2+mokFHo4J08oeY2MIiQTXHmNVc0ctdvqmeo01uRZvimncOidah8bKOLWkBLSNC6KvMw9SvNcmyqzYKhPedfeTi6m02M8w7ZPMRLIzsmA8VtDEDUzizxuJ1rBolacmsGsMzpazgCUKAU4lVC0euBGHIe/3RO1YQNZHnbJoGHSEm39SJHCOR5aq2NGzoxOyveQZ+My9HrIiQw1L9P7ZECkb71q/6GTPANy/I/4eaS+3o7af5hejeeNfPrAiRd29DyYPqNzjY2NhZyjLw1lHov8xRjotyvwxUBOgWVmRFCIbmoRhRy/PpZ37jG0wI42PsbGm2WV6fO8q5/b4z1ijOujRUr0ITdS70RyDx7/3+uZCY2GxlzS8DbZyArrvs44nQ7udsjTuQnWa5hvkFvL5oXVIWxlzss67tTWW99q8QrSigixJ6pQ0nP0fxbzHTvCtdWq/COmTiKpnt1jOEys+/uzhnRsnxRDOx36dG/nOD32oFd2omhuC/lHlaT+YvmDX6eFmo8dEVH/iUOmAYLW33ACrL6wME40v0zqqO5a+UMI0JA9O4lhByXmqobiqCXXjIodePQY9J5NLnJYEaGHySR/Um6oeXnVOOm4DMKybDjzVKEz7xM8YIDSIlWWHnU66AtF2fomWMtg8HZDHyQ6jsAMOhEOBd9OGW+xPAkB3jDUCAwOls9rzzK59bi90v5SUp/45HZQXDXve1s1vy1Rcy+zq9EnYnlfJ8nv1oRS/NiXqJ2mneLXVoXy/Bi2e1P5ezsY0Zt9mNeuXc4UEolxfka+U6OHRr3K52TCIc4q00w9NzXdod8ZKbOcMS5zgXZZk+VqYJepzRYlVMB+nx5cH49Q8Dmab+0b74+ahaLj7IHHjqlz0Dddo3+LoADV4aIalOeqDm+nF9mqs+v2+qnMlZ4dtS1qTRu5CXRif76z60Z1XNMe7sSHL5DKYV2ZhP/D6k4S0Z1yy1ISOBof+LodBzBu/NHhkq4MP5l2IuT0wvrUXZq7xwkToGHFd0qFCRAGMmm15wAS3e5rqWseB5AvsFvA55ltYXSjpinwlquJ87l4CmgvmFuj+HPY1+1acDDwHGo76iVBO1FYpjIBBAkIm93qSihfyO+/98l5J22ge65lSHlhJzVy+SjkV6KUOYEzfUjN284+5JLHBofeAlSEMnv1l5sfxYc8kYg+v5hpWF9yw/65nng1xbmWF3z8DlmBlWEarv9m69l8L964kPo3Xc2It3pqOu0UCpwPgQ9a16Gqk53OwGQcn/Y2V0x3eOJO6Oa3qVxnZneNjoqWtgqNFsm4TfxT+HYfB7ADw/p0vi/NbdSPUn8Dc9uw9Q42jbuNKa9pGRWtNGWIl1a800vqdttkkubtu4lFf2R2/gbxnScZXFObm5KhTs2PJNKOw3yMurKEfeV+XxUhkcjD9bCE6/pQUpdGEoVvss2LM24efPPlWtNRfX5M3XbF8LkRRIxdbi23LNes2qJ0by76ivGekFh6kurnWLxqKrdvj0GgRcBlpnyz2FBk4jBuNVfjmCCQjCBbiRr2bkzj6VvSu51eiyTPWcUuC3vW4xmvefukQcQaJyM9b3yNVf2eHCTNW3f1OgFPdWcYSvMDjz8+K4DGMQr++Bpn8kdm/058noNqwNDzWfXbcfy408deitpqUoUkX5FLszBPy/KlnZStiZCPQjYMCTn6aYV/hyCNC0jffuf22APXhz2i/O2NKC/Ydm5OhuKAQpSAg87cLZGfCgjqDr7PiaiCE6z7DOfLsDKGJj0A72LxA3NQB17nD9EPYWdaeUbzf3yIwgO24YVSe7TSt9rsKJvLJoPxLffcJ0+/jVy5TiieMKxYWdx+DkkIahaHfnUUOjDAvbvttrj1eXZlW/K2I9r4HVjEZQGKfe0qSrxHCq5FYmawIR5QbPX8zfvWEZC62USjCF9wjQKvqCH5Smd31ytOGVYh2eFWAufCJ7czf3uDnpCtKQLHXOKMa2I+D1UmEqB/B361JsQBxl3c9c+mArGUMqZ1B4c6KC7Ab27eJmJ7gBjWlBdWgqvqHJgNwV4fidlBbTvW7TE+E5z3D+DyPilZH23a7H2dXaldSoUqzoRnYZj8MaCL7SBwXMkw90iNekjABq9/B1SAYE9glT7FGw8KyhBw9x2LLjO6D6ypfb/Gx8BXgMsWPMVw0Y2y2/ys570f7ZnnuCCFuqL4tvPPonbhLYx220Wef22P65ex0+mg751Y9FJQZcnQ75NL2dMXKNZ7xVKidCJzw4ZLHVEfq4lSxDDa+mgXWyVhSLdbdmGRse4KnubqMkzGwRRXr/ti9db9hpa8Zxa1zI+wXLFEDp5YWqkp2c8+RW8wXgtblbUwOmBPmXmKkEs5+yguMaeGEMUCnJoqFxYrEz/oqz3ZyTOAVUo+k8LZQBGquWpWpuYQWrW6IXxS9rYIrKF1QpFr2Jj0Hk3+Jjz1QOtNjMa65Yr/ZPzYau115x1FFxS1HZcbwl5Z7Okq9MMgtAOfd4FyJrPM2ZOR43dSXhbpJf/cI7bTihRMx7ibkLty6a68QBPQsC5jU5Py324zk4Ay3tipdnJIed+TN6sEJPqgqpdf7wcJGOLMcH3e9okL5p6aU7xmaRSf8u9Xh6xkoK3ga3O/O2XJhIUWPxBZEMvt629d8PoINNprU+kxOYljW/P2FyG1TKyBO8OnSlapKS+u60gX7XlUEQhtU+inDDIH/b3ZgcT192fh/vRMrwrQWd7OSiQP6iEARwKZrcYBcU3VVxonrim2XT0M5DvRq7HNCS+4W8gmv6KMWHZYr+69frsAq8x3jI9zlyIIDwUqbwsVoVcXaUyrpwt0xjXJTn7JPhJ135OCVnakh9n0/O+x2++sV8mA88pqjuuz3JY8qwLjb+sLwj4vAy1lCur9UAcK0pUdWYPdjqD8n2tAnWL5z0Nn1vo+n+DEA7lavsQK1Zc2qzcX+wTfllYNQqiH0/1H13YFst937HdSqWkWpmkHVqmptIkatlk57tFQVtSLEjDZ2ac1GVZCi1apRe1OqRpHETI1QIxIrilgx8kvfp8/7fn//5Z/Puc99znVd55wk9+fuyHChBJPJZI8w25N2aKNxMNk42LyM4VqxNGiCK5z76XPopUX0G4rMybQXktk4w1zN4np50o5FEyh8Mcd7u6U6bvPttDfFler3dLzxbv8bzYlSWOVkRV1FYlbeEh3zJLmOsEZNzcBbRujsS5v+St4bBlnk5pDxyZFP+UvjdFLmf3Mo8q8t3eY4tr2ybi+TUY3rV1oTrPQQZgclfShQhmFSSpGbKwdSwnqwUVEcp2PtMaJ1hnmxyjir9uLb/Zr39eRzSZtgvRX/KrEp20Ei5w43W/x+3PeNaOUJo0HN7/TyGc1F8ftz18ybpb24y7yQSqszoyAjTuMG/koH+Ksa8TOMzf4MYG826rfpgx8XdlMTFRQVyPkfXGsvkgd1Bj8WTPgyNicNbWXjTER8Eo1wlQ0T+MlYlbubRvYlfC/rzbUbv5iVo0L/XCoV1pyEK74nc/KO1/qIS5VNu539yCDi3pTHbUJrgBUU8aDU0X8rzBd9q5FKlhqmaQd3Xj1fOqp8oRFS09UIJU326PRXYOijAJgPgvC/DnXB4Rfz5eldHfo3d8Dt9ICypQ31FLK/AguUViLwmLlMpsclasBVdHDiCL77PkGJ6/K45OKQYee1pDjUtNvBpT7aECfICrNvU7445d2ziT6h852pJezceNuu6E57Jse5kJu2LKqsqy+Htl2pDUFTuukEJE43V/cGz2PBOslwwJkGrgLbgmsMzR4x9O1z1Pyh9Kvvd73rHwmFrAdBQBZCqi1AthDncpRFSvWA2yPVO5sxmvhJkRzYZ+qP2Zbv4mTHuayBjHLk5tMF+8zHMyN4XDUqK7U0+rUizmFyTyVibyfLY2wJM1zUvzwSg58YQeczeann6rgh2JM43OpYSwlZhsgpFyfOXC7P6ICOU85pXzJ/Xiys7V7st8VuFUAgU4EPM75Y/bRY4aEEh567i+29tEjdm/E+vJEOwBfL5SYcgxK00u2NzLARl8pmYPURUhY1RoS96XusIGIkJjSMIfytGEldGA5zSBy3OTohJHId26WP7b1f4OPvdVgn31fTXB7gb8ewE6Dpx+Mn7VeJ8oEWYm+TXBmlfVe5Y3RKVwmOO3wnj46L+GM6klCFAnBv04YegD7aaPY3H+jWnxvEpyb5rmMbdbGyQT3V0Q7DHcfZX0hOttmAb/ok4Iws5GVI4ouGd4dORt8d4lG80W+spS0v4fsU/aughCLoCGCN0nvXXe0gudF4d37xmN+tR0vMfolq5Nk39i05v04SaC+0fF4fXm40fAvlnJiv8Op0fasNzpYHH/aDm+XbLR/GfumNRnj7f34f1iq2yDRPOT4XMWy3kPwgR0cuQkQFPX0xSak/sq3iZczH3EpTRZItuMvqGYr2ZjejyW1XG6zXcVCAHI0QySCG+zDAdXqNsGsq9Hhp7US+z3hOZh9Will9+kprre9e/uA1qzq7NyphlG5PAW+20bVxHYyaro8YhJdC+w7UISnt2QqWOSsUXhjPgK7YCY7jrok9MbKXteu/KVbXfHrWPs/Uy/Jz+KPJgsiu4HekX5UEIkVhbq+5Nxq3erWWLZtdYE2UhKtoxJqRfBhjc7dY9G0ZcPHzDd7xUCc+84PGOkLOExkSsSQLi1FzWNopbiKWXoMNXwayyXSIBp/ZP79anmPlhro8/PND4++3TPo0bGEo79TXe764bS4FMdwIfTBNSqcJgJKXUqCmwadtmEFJa8OISKSwDklxKquoCLV88mRSZJx35/Qq4ZipCCSAA1QUFlwowGTXrH/5a3V1ZnZ21cM7ts4KPUEpdt3BXpT1UzyPTlMLUEh+5eAH4vEhs3vui8/vVp6SXC2bMQ563h10USWOc43ruTZgI/zeo0sW8y8Ml0+kKM5G3FATx2nLCQUchmMftD7dEUj9MLbITfXa2FHRR0ND7vXsCPJuhF8nhLWaDe6EGu+BkrpqnWBB1opM4SEHlXxfZzoX24SJWRMzSskQeaLLpVvYacCU8pSi9MudRH7p+ebKnSuMh+TLcJhXIqN2lxFaJHk1Utwb2jA+fdbd6hTLt0QiLI9w43IhIZcDbSSAW+V9dzZLPLzx9lYzvi6R8eAMf/YjT8fAUGYNalxl45VwFxnXibPzT34hNtCdi7dqB06Mjema1R+9GuEuni48ZKdwKLrf/mAR52UrAGPwZYM54ThMpfDzzXj8z+0MomFE7Jn08EfnuIU9smRyX4LExj21VwwxZko/1C54oxOF9FMr5/0/WCV3B1bTwhn3/e+a83y7efaGkirB3mrUqNsfKnvGj65MhCCZJDEjPeycHdau9/h9DlxGkY6ucUbvrugKVY336aHsYckpB4e6iHqO2pFCJsGJs5Hk0ta7iZGfbiQ5reordS8fLGY+v+Byh5u1fwtjFhf8VmJhYXfTGWShiKCIIyDU/dm+4q/rgujBB7YdzTrF1IoL4mZMBkiFc1dyfF4Xt29O11t+eZvjhkRfqzFifw50Zt4Xy6jzLJ+Sn23+lry1GlO1dpUhvPZ+RW+DzbWdopxQk4aWKdukSLWd4xO/ex8ZML4IKY0lXb+LnU7BiWK2XF5l3bX05W68CxZ2oqm6clK+x6CWFXIauEcxyQXWUjdzoOHJJZLhOes/RdJphlatdwgPnBQHVOzOdNRrHpyWVbudHoxFTzCC9+TG0OkTN6rgDk5d59ZWb7jHQvbfEz5VVvl7t43eIUcH2xidDM+ZKtyDSidNvNkZsRmfQwvvQAuRa1tvGuhKFaUjZl5Y38K0tUPSnYsYmf68WNGfTNM081Y1Ls2PeDqkbxkT8/Mt3KumVkripUj5ZJTHBDgRI7bmglxxaZr0hj9lOl870K51/5xbd9WRn/fzr7n70Z2B78Ic97q6pOOIJWZu3vRRUyJxTpQBVGQBJtQ1Xe1K+pYo8j1FzTR85gyuLV3nGcn1q6JwUtbQ3IEtW8mS5LAPOj326XK4jWTj9QaOQMrxN1Y7raUPYeVQs1pcTe7yA/FetRKOg/6TbJVm9h9AiMsfq5Jv+YjKAJVVJMufPDW9hZV+oi4i6uz9I7jh2zDEzQsSGk6hAPgoee4Czw8EU0rwDoD2jvu4TQUZVUKTbqnbizehoZOSyw2yB7czCrLgLYp6IFXJ8FqxxVD7VPLU0jJMoU5WVv+SMVZWb3BTL877KsPh/Vn54JykPWaqDL0DhMPuwK7KJKAwbBIkXGddyU3/+22Utho7NH/CjUKBtZvhKOAEK30xfe9Cjp9EZuqziNLybB9Gt9rcSztluYVKMZDE5G1pM4CMIUNF4/L+u/wkenNBfzw0wXd5jQ8/ta00DsG//LlCxY9INnhP7kyzw4VV6xozOCi75iPT78hr/Q8tSax1WU9YqNaRfnDhiittnJR4cLh2WRRi8ZM43v/9oTOZf1eZdn92efDVlTIeoATsYhOgD2xCvRoZz1dEZL6TXdl4Gl4qSlqXJ3m1d9cLh+JA800lKMnsLmcH6SvhzYREkKesE7fjRA34/HVoWdPYnNKkJJPbhcRIgcqJuv1fhrSQadwc/36vWDqKIxGBUk4bPFE/R5U+m/yGnxfqKsKZvv5pEV28OnQldSV+5un8mjs4pMi/4aPrnG2RZX8csLjQENtctLAHbrFRwokvfCiGt1gJvs0Wn51weKqMxuEG9Fq7OHd5238xx0WjjO4OY6hx3sFsVCd5t6njiuo73JQhMTVJHK15WYmwy0wV18duHYcUiWlfmNVF3wSJuAp1W1y95E6NCLlxZoU+ElNPcFEYwTkyROpGtDhxk/15rgIYaFMAUlx7bBpSw1v8cSdju6bQ7EoALtQBP+pVw7esUypyCz84Np08cHauouVUQzaO+3OoSoAfPuKiyZqUHbMGQ7M4g0PEh2okRsngLTAhiQcTFxdhhhU/8p/FISorGH1oVmjae3tiQEoQ0ESV8T/3Y7rrzt7DphkOTli3FVWHXkGeEZ/xcoBPmRvsW9bjvcRJ0O5gaEONFFWHnB756VXncUcr9SeLCkye2sUPrMA7bWYhMhzMl6JRFhhmoUyksBqwh1xEZq5HrLlnmniEML8o4ykgFQ2yUGX0sYq2bX4L/IZNr2zbyMuOf75m9g70B57Tw0JZQ1b2LMeWlDbOl/wCgPti239d4TYDqXKc6zUbxMM9X5TG40Lm39swHVq0t9qvxfOIqbkGWw1ck1s3k1tbz6Xq3jMjij9sMKNHuVXFfHzcTuIspTFfjqTMgF8NNGUGYVQ6biWA+TOQ0Iya8bP9U5ZfBKcwDZBdiwjZny/V+6tvbiVD/POqhIVT/1yDbXUKFGG/2yBGKouPot0oQO5li5Fa6WwzEic6Xdv+FDpzIwopwSwu8xmlPzhnjU37xkwNEIaXuq2OtJdILw/wMC4KeGoKFF4LaV1ou6eqjw21lZTOXLTDM4SPogom6fLvP3TlRPSQScVNltyZNojLcjsfRKqdQ4ZtVKB3cRbmaHCI5EWu9J+FKJrU0kqhhi/1Pujcrb3+UA8vaCj50Sr/8sA70VvTUsD4J+c+Zk6Llj+G5c+/5T8vjWvyddi0dZuo+hh+/UwR5bhtTcAig26GfhMz9SP4bIDiHlopyo6WPfONPsXNn++YJjCl5XdyKAWX7hjmxKI8xYAur4tRyr3zX4e1IzeC5rYGc0tupdlN8bp5lTh++2mBJXZmopZrqmrFSA6uExIGdl6mj4H5L1UMlSWiOkBYMdL921iRs+oRY5wUXBjDoWoMijYuSVKM5oJAvIySl7LDmENGzkI+lKOkHYd6M+mib40lnjbX0PG/9WsysU9XJz4kRX7WRkEJc6mHssEFaZZD2IwM96ZcuMKYzdjkfaE3xpxfCdJgnFuqeMWcu9S4+34eJz0YcVFIjKK4jKKp+cfbxs6OP4tMSg7a8Mu5PYsOtGESjKUw0+Qkj8UNweQ3qtqyvo+uW/7CrqwUHFImVz7pwXWsz5zrt4mmg+zaB+udyzrfMtLWuDzl3J48z/HF2CPMLY59rKVW2U3d3K1QjZuOqcMsnFrVx14yn5i4mo/HrimFJ5e5BeRydsG9FVj44lGF9+6AOGqHbQFmxX/iQZAhlZ2H6/SzBrrnPjlw+pgjwezssFAuzi39iecdqhaOsmpCYS6kQp7SYVGpXHmC32SQzeRrwuQdHfx97Z2ij5iL71FplydGvBHLMfHX2AQBo18essz11i2VfP61Zdhh2MmrP7t6CzP2IvlzQZRgkUnk2yKZgUNEg+GNVs1l3q36fO8ZVOkW25XG4cY3+PyjPaTjFubVYoZvjJgSUDnl19Zk/N0h5ZPSbmdY59F9phrX82C+5F8FzZa+MdOn56qas7UvujM5+GhqJ2lehUzxjXsHOkTElctzgHbsPLy+iC28PW7ZExAc++JLjqzbbcWyJt3iCuRD5v3i1OWeRkkHTDpNYT2ecPrh76VTZZKHTjpwMgKiuo60o7PFmDnkE4ODVfna1Rpy5rymzXsnJnwzIHuqRrXm7S1c2dNllFFFhyCDdg38yPkcyGhLCJTcywsxDhFiCcm+DJ9ihQufB+WqAhaZewgy3BQ2AIlRbtGe3W0mEArdWZwqpXiJp1A+Zw1femR7tej+z+KH/XrcS3mdPdcSSk8Py3kYA6SHL4rbKMbQzM0h81nmshoW1XUVH7RlHHInlvmUbByWMx48SaIaZjogVzmd701H5Q0ccrMVfmC6yngaowV8jVplnGkqd0VzuxmPW3AGUw7m0d2sQmLBQAOheQ/N7Igg28e/mB3WLrZNSECmni/aPA+vrEgNHNxsNHSsben0VOsgPlAaDMAy2bVl1g3p2S/AygKVf/Xw9ZOn1wGLcoHT5fBKwrLk8mRqKS6VuLy+4Tldg1wnyMqtEXC7WuTMdY53lxYs9X82xCUu7sTyUWAbMKzDXmzcuUQ+gVyZE+gTlzGcFHoFa5lEtjVfhed4M4c4ZaCgnClXu/KyKkt20lq3vCATJd8d1pT71TDyc9rzPv7AbEKYQ8rotAh57XVWSapnVW3lAQ7WqhSVOP0kbOfa2ckBYu0V5uqIZkQTLFH1/HQGtXyZVpJx0NpcksozGzzQVd2MXA4peSi8pFU7uV+SUerkVBZvd1eOJjk6CRdevONJaD4TQmeFIX0ofsKskW/1AAu8SiKKgDgZUh2/A7TbUM+xN55I5jnyMmoP3/F8p2DhN6NTNjkKwvUJICFPF1BfxxYn+7W/ISwdr5Q8acAA/N4BtO2tdgJxwwqPSt1tP/8ef1zNuhhiKH9+5JL47dqHt30utU8hAU0y2bgPhqt5y3ajCoIDmu98DXIZSjc0u5NObLjApYfeJCafvXI32+u5b0rUYR5fYGoQU2rAeI7Lh5+AK26LFHeNNYDDjpr2q3xK3Zmh7cteHOVVGICJdPy0GWZdpTMZ0sy+BTPbTF679Vpi81hdNaeJXj9E2PN2LiCvuZe1VLuMMJkOaa7RsljaUVkHgvctotPEGLTLXrCFqJnget+yJ+84IpBoTpCIByMOmCs3YRLDeYNPDLec68lFbC0UiPDMxIKVfiSfPczP94ZWpy8XlcFWoD/mWoc4Ifh++1ZiQGMpoTlr5S4Nj9d1soqQplxFLz9lxF0n/tiS3zh855oBtLqZKPLGk+saI2CjitObq8E6JT4i9zLwWJB8+PjNqTn8S6+IvdMFNlPLKLduL+XwGhmwJt47VkPqcqjc+0ZfTG2Ky8Gz15LOSPncrKe9EfHVoYZYp4uRKNogq0L1gjSJGS5K17hkiqnoojw7CKpY/hj9S5gNlAT5VH1rGbUcyVBWgiPIdLY9erH8607apSQHDKzYTXfb+ZlnKMtmDODCm2sXk1W1v/ENhJVenph9m3Pv6jXtunTbdZX8IPfq2bGpwuD7w5VCj69EprKGTFvWojBeAZs+LR/Mxb7Bpz64rrZb3vTkrZZicdOY9I1mx3/QZWat11+HFRqJkr7n5cwYoZ4UmTS8tPFSRM7euuz6AOV7Rcn963vs3l6HYcOZhAP38R2WhjV7xPbYmEnoAsfNqYqL0sEOyDDhertdAQ5n+UVM3JPNRGqjA9zblApTz8UZ0rIe9LQtgHsF3MiSxAb4kcgsx0gxe6n0VaV549rIx9E2tWmqJud7vZR3auquAyytWGNt2xQa5Gbm5imPPj/acXS4OawNoyagSCKsVcdUlbHcuMFLY0OXHoRBr3IL9tI6rvJSYJQvDOEtLY76y4NLFPaNZv9m7HgdzOsd4vi8ViDYh7Wls6kv+zND+AH2WzLFcSMcj0vehFl+qX2eI1GYB057rqOj9JnikoiZZNhTSmQMb2HW2LzWm9k6x9SRFJ9r3eax5xOVKwA+CufaJDo463zVqw1kAOVJLxoLEVgjn6EaG1WVzyBs7dq2MN/ky/k+oYwaht9mUBoahwOq4a0/PRuik/2uJ0kPM7GSTzIpXpJji5HykRjQNueGeZuGDH7veRXHx2KqbJjm6MxO4a5r6KQz+WpB44OQx18f2z5G3VL+Jj9HrXnP6TctOaMnx1GYWWTCkf7ghclv9fIZwqIxWkDS7uY7+eXFSUOdRYZDEaPg2XrGVwVlSZGYGQGRvNs3k+6hBXIehhcSIHaqjVXL5Qu2aNVzcG8BOOxyFMrThNgbdJpqNtIkP5q3PLJN6p0cuONhvvJJFh8Cv6J9VF+57uKh6V4boPjpsXiLycaFW0YM1hzxRbLDqsy7zBr+78UWX87rCCagPON9Hk22PC/HUDfmvvOCaR/i9NEpQQlHt/WsVra0OJO4MKzTZ+tUBz+LLwIRKhtEcdI0P8hNKaI9eeM4uAkuynzCxOjF52Xqs97ip/bScFhzmFJ1Nfz+ljEOhHPZpCjO2RavVcDxsluutkuh55lyyE5Ln28YC1ql6HpLvNMyBwd7O9uKRujZopIvcg8bPHetsv45dDIlLiTeo5Z/yCz2ElvD4JrYouSbt8J1UTIg68GRR/xplMBnzyXWoyGHbBCatMlgUn+P+XjtA+uNBTWEf21BhtHceROJvhEr/LW02BMrFabovtKBkc0LHRElD2oDzdlnT3JBEH7NBW/tBve2I+AoI21bZ8/zGyURyGvvcZMet8s87a16/Zs5U6cuM5gITxiIPYhrPbp9bPDlvQWSCK6vh61/5qlWVVRoBcmPTK7uH0qck2IAcRprcN+eHMmpiSkI9ZqwbVtqzDEgPo5UgZPbrVcrHzzZkAak2kmfYRY6jwP6Pr5h6nz0M73jRJ6xcikw5S2Jef+Y/OLUCCUZnEOQJwlXlOaB1EBQUSXVdURAVs/JcD+ANj6FYhOZegZzPrXJ87b5Rue55j4jUzFS7I/649ueUcFgiZyzr2KPPa2F8/rXojaDtcgH2hkPcJxBozta+miLeoNsWRKTATblp0Gr5TX2Sd5l2xgUTonBwSwkL0wEIHD1qnkj4TyoqLFg+aFcrV7Hn5+YJIwlWUzmWhdOmx/5bjz7ep2bcphPlcoRHpNeb/89Fc8oQQXwDdbEvRsyzKdK8qV+4Tc3DmiAVMaZlzdGTcyNmiWuB1p97feb/16Hc8Ccfqle2YRpWIEpo53EV1Je7N/Lb3fUG36/3JpbMLQJhj22vEOmd6onKfY+LwZ6wzpf2GPzB46FXmvnSEApSu7GJmiLzwVvRMIXUN3qmBe0D2IhfWvxrzs8Pj/iD4fyZjNmN36PYM/dNRVbr9bGiieJ0sWaGXABVBTId8bsaDOx72vq+qfnitd3zCZThmTFfJ4kRfnrhwDshSa1xSIue+1RvuSw7EmESNsD4jEiOGD5s1IfaGyu2leBjJKuJxYpfpOSj7Tzn+JHm0eddxrN3Q3xlWZh7gDtqi+9/inpFvva1zxvDQ5Eq/fYOf/eyNkSTUdZGbj0zWQmtD5VdxjB2ZrjAvkWNzuU9NH1YLTDUPBGXZKcW3cCQs1xBylLNCoxcyuAWmHrQ458wga56GBiAM2a0j+s/8B/O38QNpU8T5PkOlSN33mREs6jyrGa6fvkVi1VurJhFGiGxKzcoZ04DH/ou0MlGg9jXpHSfBEGhwcfYfH8JktsQc3rSjLx0S770nyvLG5COhx6G9vmU3lKXyePz3pvfmcoYAvXvdwwEJoIVX0fcV0dGq+Y06NzeOdD+tf0bQAfxLFzdbIPZNLFf8Zsio8JLGw6mHTvgUtx8DS483WuhMKLW42fiROGnaHxKJpjh33vnklv6JiaPKkhdF92t0DiTxLgun8u3TGmcvCfvnnEGL+aK11waur8gKYfPpnMElrRICXUs3SHppZihBS1AWbenNWpM2qXSd0dAiwX+odIIiXRPPyxOzUz5HVGCZbUXb1xvg0EoMVY+Xra7K9EKMfZl6siFwWNEi0CLvIdVs3G/4S/DnkOsCnz9A4s42gMDO0W+PXt/iA+ijNw308djsZPWqSi1j5+zaBYnwNBzULkBB+x9+4xfp7f9Uf4O2qs6vdmBr+xctq1t5YHw36wNpc2ypB8dLH/pESUxHxnDHAYCkgp6z+fesCW+kPVOD0jNcpHYFj+ITCeOtBXylKfCViu6s/fNH8ENVNzH9KeGf5F3t6mJAuzuMWo4ecUfWuDGsJbQG2XY9sfNkflsBiqNHO/AIdIjieSsq2fDBVak20obAV3nHT1fJRLW/EjOhF6Hr9OxB8Y5kTD8iqHM+VSpDwbMqy7tFFNowZJT7nVRUwUxVYCrYLcHLZOO1qaM2hLB4cyNqc3FfxU54fBhXuv23xLsimDol3QwaOhpV/8cZCc9+EJYsTPJb/e7CnrwGF3DGjsYQ1/d7jIfMfG8HACsAR8A7y61wXIiDg3Afx9hkUtgaqQuvmtg2tWzSQ0Jya62Xr8wkPgTaQY+gpkSv2xb20Um9aH8C+JPoWbrFf1g5oalRe0pxGhzxmm3lm1Rwt9gLZHz3TETbEQTWYxL1eygjrJ3tOq67MXuXbLZZ7rJZmGiVnNuTZv6DVf8y3akMSBMlwJpje5eoLFeoBJICCQTq51Q14JkuMfAPYOVmsLvgS3EIr9ShmzpRPtpODovBY856a97IEGubDk17zvmrVkhqs+5z9EMqMTScbL+HKrpqT2IhHQ4UOgmNqbi7foW426hyaqoZOfEFMe5Yq21TS2DW2f9aouViYu1vCTGvjds4DdukctH9+FZxcu50r4AT2HJGZOs+yPiWnzoJO/5IrbAEF5sMRuSfPfP4MQQeK5gJZnwoUO0SIzfXo+uQssZLraNInaAzLdNhj59k9w77eXd9QN687sHsUDduMlR6MVy8l7z8zcfPl7iEvBR8OJBQnKV9LMMQLIsDgG7XEX7OH8pNkgpsMkvw+/vsMit9Q4T1FI2UzbaM0u10t6B2XT6N3LOgH/j9TRi3ByUdaeflqrkoTsohWg2swkzIouFF8iGUIU/ZKl30ic4emKsxdPQgO9zTRNGhxurl3PI3c3yK98j9C8422F36N2sLQ0+9pvQ68WQmdBDdPagLEs98aMRwfYW0Sj55UdwY0a0/2f+jj4YtReB5d+zRUc6EJQtbi3v+VTAULnF5ONiEOu8YUxO+ZNus6Y3n6HAi+d7AyLDKIZdJ97brF/a3aVZePOqmm4Ts9+MPdWJYDURdorilvaC+Y4YNAWFnQtzfH5gnw/CjYc5eh2aRal6Rfw4N3ViY7HzUSJ/9ER0dfX/2QyqY/OPWBlZRpMK/jBr5d0VYeaWFulfi0VGVP14/FSHZjOIlFUnDVNKDDEcht+tYgq43BfOkVHttDCbCRb9nfwtxApITHQlMWKq3EqdB3Wuc1RnJ3Mt/vUI2SQCdIqMnT41NWGOPF7dY/p2Kd2olsAuzgxe25941uopHD34mvfN2pq7WM7wvVlJwFkpsWWpDOLmb7OHzeD0Ni5hfItN/fQV2oWGQRlSPBxF6tV11St1LAc/NHKm/SONJ5Bbo7+PtPxL77WG9JKyf6KJkkfkBnvb+soJBHzkn04zbH4VPQcOviOuqPdYeMuRPw/274n+OfAorGh6xF2HpjaQfOit57ciEBu+9IKEakZbfHXgWmRgI1943RoyqTPuQxB62t+ur94uDcsTDqnpWWcrmhq7olUYYCKfSZH36oSC3aMo3ApD3yk1YEgMCzm0cEJtuDHuKgTWQpbbFeYxx37IApzJiu7RxwpxZtJxzRjt0wnDXcas8gRiuVJoSeMaw95IId3IxukkI8rGtaPlnMFhquP1LO8tzDnkb1kx+nSAyLFXE0vKUJTe4GXYk3j0leHmmmYrZaruSPZDIsUQ37BVmYYsmmFHFFW65/+YegnyJ97uRlZqD7GWJpBBZUvnnKK+9cqoFzT5ONO8q01iTPM+4sHDt9CJJ/OeG9CDmloOgDOc687TWo3tVng9x3U5PZwaacYEIkrWXWvvCvTHmkkAQ6ehhCp/KcCi3KBKJfDE1IvFx/4bMYndAQ3mCs40I6VZ5ChRKwwS5bJaC2PJmnNYQzPHbh5LpR7335WzYEG8PMQBU0Mtcs0iIRmgTKGwokbNHrb8HDzo068bKEr4DANl5G0MRSalw6HFcOdYK3X34jsuweH8Z9GG10kNdhp7pjvxgWZ6f6jQJdyUX9eNSCul0pdovQVOCWamBy4WeKiFI2DVNlJ9yKYTDZzhs9s7ZxfkQieMhxsjC+tdQ7z+FWrXJEK062l8bFQe4X3D6fipuLNTF7gBrdqsav+d8nF0Jq1C1vonZaSqe/Cq8t8lLpqbxAu60JD1efQ8on+AEXs4ibkyKRhqhQGHZ3r2pDp2bWDTH82JgELu6pzzMver3YeQUemEWCrZvwh+SM0rjQ03TvNrDDpt3tDosimY0hTlgkax76c+fuIBIv3SX1DA6N/zVvxEwARn0/kTLEJR3FTXJRgsqcrFRwsV6O0anyBCkE9waXd9TKkf/hqTHgNoY9b2TZjJklpyAjNZv9D2nKAXTMv3qdkn9FkYwGtOoIfW+xsaNScsoZadJ0v++mPY7daEa8JaPhEtnVWN1mr7fzAICxp4vTlsnRwUWircmUqWcLkSLZntyJndTl8qt4B7wCtaZ4d9vIqVfPvrQ5QqGr8YH7EboWTeTJUEQjK4qtms639GP7cPFfCvLa5aDs+y3bEJsJuWdZyEnbISyNHWDUbxVCMzwHrQtsBqWuGgCkL7mmp9YhX84djK2QWC/bVzN+nHYj1M8089DYVk7SStttHb6wsLITPBT076jKknCNa/b4b2sZUOy+cFFmrx7eOutpCq0BmjveKk+yv0e7tWgex5179Dww4mTXgog/14NoeDwqpHCmQ1uuzB+SXVri9dIbgCyabKqkLDjiVz81ZNY1l7pahTNlTYTeHxj8/2RdzWGMCUJSNKCZCpGonbkKbak3RZmjqbxr2CJEaVNZS5FfShHjpme0x+mV0TKrnmqKKaVFmhCvqMSjSIMu/h+UaZnD7bHaGUUbJ03HUwqAUu8fRMzLwWqGVc74ppWrj52oYh55JiFYU46HO2BGIQVs1EZXlQsR0c7DLxhEQynf3ucPa/wFyUSK9peNeTVwVqZsbXV66IbkIK3f/ZhshoXRE+lHw1tM4vfba6eFJkwmHG2C9lxc6Rguo1ywHtyVmacZ1bgGt1WQvx/3VsZap1Zepni3mTaD9Pf51bxTsZTbLlgfyI9Tw5VBHtKyH3V6Ahx2jAWzVdtRm9qwf/Cfd84LNCJPTpXaFnTcp58o+AiwW6zn/nOkMSvXPPptXaob1L0lV7m8k2CfsuYkvrPEAeTj/F/KUD5jVrbdpBm5pQYrFTrWdmNKPLvKS6o4Wzk1pP2+ufLrbO35zsCnhp15x0f0hW/MJ1cUGTLX37X2PskMV89Jgbfy2EWQCOBAwLXoEqrW7WxkTUHWdXTZJzWwe96X4RG+mALLxeu7ZsQlDYlnBKsMsXx6v9geN+7povFn6d//JVLKwCxo/bcWs1XmQsXtV7N+WmKE+kWEJV5c6r04XJUGWzdq49x2WDU9UyzPM1wglB80vO4JfGgtAnWDZBS31OJhJZ9n7cFhaKc1otqwjq8MD4cPVwmPp6+XFN3oXLGxhXpO2qzmQU/eKEQ++1HgfhN6iheZxN2lPpuZI2wlbHZ0//p9wMPz5N+wdc3e9RzwucbGGTdD4N6uqv1qhnJ7x9ztiO8rmtx3rc3afG085xdG4z8evih8YGd6r/gImHMRN4oSdAX4n/UqYQ0TRuV0n6FX7wj82//TF8HRmq69MXHNybnxrO4ao+tRwY7WLs013AVmfSb1yhXb+vZz7hB+qiq7bmrNliLsBeHF4i9l2l8P4FsBFbiWW0ILg1qpprl6JbRyQvn9FfScNwvA/h8EmdRr9ylAL8Zan6iN+8sRYRvmlUAMsLt43wohhWtYeRKthpk7LFYbuq6QchFcAhaEwRwZtXDLE0erwegZKtTgKTJZcJP5G/O0I6V0uPOg9Y4r5DTGYwVM+kNttHeevev2vA0rhZbVI0/27BpV0b8mL01XIS/uthks2WOh54DFkBVwZLsJvAhQH8tn7MFPvW4ZZYus/h7xjesdwAfxK9J/E0kcFlswPHQ+cz6yHcpH0xX8Ysb+Ks95kAJ+Pq417aOAcd7ixsuxUiyTUHEnUjomllhFoxcYKCbIWbxHSxMJzf06RzVUnhL7j8AbFIv+Zn0Q56cEIS3ug7oJdo7u3I8xFclGwRgaHqSWJET3UkmRbI5mrD8ayO8w6PMU3lwk1+6dBbu6EzMn6F+gRSho4Gy1O8orzlHNDhjabAojeJv+f4faYDMXz5lqgJvkT4fcKtHC6SRzES2pJ0jSZ29NurauuudNphxs/txzE96hMz9gsv8BhtoDsrhqo6Lit+U4gH4Q8CzMU0nbbe3/235R9uvTnDonkix9qCHKV29dmtXsXO8mITXv1pMYW/+h9/97FBrJ0vxbbfnOHLOJuphsIN4exwSYlIJ3OgoAS8KMiZuqWpS87pBSFS8wnFndH3oL/ja7o/Zt04sTfqVvevdgroIh+TY4UBtNngO9vpUPszA9+bojwo3l/s3RUIipPaVgoFLr5EMmr0gboalQun7vTDcgVhmxZklaKw0s1xOat1H+N/omC+Bno3VzjsNwgq/nMaC2MLuYLegOd1rEuSKJ5RjuezPZPiwMmedFixUj2ICJ5Q9oQHcAPzbn8Sjo1SxE+1clqic363uN//1ze841USDH0/6BBphqFkYDpylUjWXf82uRJsYZ5QFEY93VscGb107Ed7t5PTZunyfvsIDd1XG+xH93qDW+EGTb41I7Ua9QMmE0D/n9s3Q8S2tOnb45q27v4o/T7QZSfLZtGkiQNC26o22ehriIqT080ix/ZB09LwmGTfy5hp5PjpNIQ+PEzHy91s+L18KulgJeWXPNCf1N16k/rld5eWbf5dLlVVEUADmuXJHUZYm1mM+KG91+C6FCA+tGkyk0Zst2eTUvs+N3pmFyZPfJ3FvT7LEbqj495XVDuDDLCBf7NPT1TxpncojnSR0/UXTr8Hf5jz4lzjUdZjmYzGco1Fz9tbV4bRJ5tGQI3YJcPcyvhI/7k2SOeFGqgOEnrqMnkjciJ2Zt/B+6/9gbTg17tVhJu/AqcNMJyxKM2K9xr91fSMgzMqpHkVS3HbOm4uSV1xcpAg23onYIDpBipjMcGoXyyqTRH9Ytz4ykNwUv/NTfnyPApuUqqRe+gi7XUAtZ+shZVuznmdsH52Pr9+iMVLkgOQMFqu4uO8vmDKuTOhbyk+xUhaN4j29eoFD396P/lor54EtQkBy9tzM29Chg/Cyn9shm00WqNNvB+l3ojUfTIQx0/YYOG2przhzTT7rabzHzUenUGcVebWI1Jc75IfFLw3wr1KpyrQG9oAjyqS+sGXyJJn1anT3Zs2x6zNLlCPeFLWssaZSVH5bxIIe+Mg2O+7ZJEuRUt98nHvYsemOVC/62m/2YT5HuQIDoiqRW5bzx7bZanV0DE+0e9zKIcSSsmTH3dzvkjBlYmnQMYPQdvGWItjUCDYeOsgV7E/fAka1HwVKLxR8BLHsGL/4t8t2tsY14S38wCYQis/eelmE41RgyHbgYfMLDgMA0rQvCYinaoZhIQozx/kPh0c/6KME7nJkO2dOzn2E6Wvy7Nknf5u74yc7+v4pM5ao6DfFyfkabDqyqYHZLTV1KJgTVyR1QivZcbQlqmWQN93NSBsr9baru33M7D0cq1uGf/ShUzvdoU6XsDPvBE1MJ5ve9ir8mNTmpnd6W0mmm5qqfVRZs6OWfeBx/sPdRH978fCZrWGtrPQgx9PxTsXZxFK7fhDL5F/eW72pnryUvJjXHRHcCSXwx+j0fsrQa21NZXOyLiWRAR/JCctkPlDFTlr2XXEbRgKtplApjedTmjDg2WynQBlZFMZrEXxf5VDiE2CeMbgzlBw+DOiMpnRJspF+zmPJh8iqY4u315n2C6a6uP3XkRt7y0p67/h9Mccm6ZtWKIodWW47cnin6yaggC/gfNhwzxNkHsFP64WjmawKQNtr4dndbiB92t0dl/9Ak2Dm4o8eEPOtiTkbVWByr+nm6qoYZ2lMXBxEk9vHKkJ8l/AdWt/iqaC/Ch/mWQ0gkQcUm17CH6/jqQ22p/RTlll6scNB9WOLmdaIbGCMCPdNavDNCJWLepUxcaaniTO/YUy79ldy7oHMj5rXkHTq4wIZjeYQUQtCwUNI2L+UA+i5UYqQ4LA2y92YEC10GlGEN2hvf+G+sblHIkq0aST1LXkvpf0brnpt6lpAQ3UMLHE+Ms5NzkgnKY5HBGhgXBs7VW8c8wOsH2+7nyhZpaVvQorWSBYW3JdNkvE/3ALdNRjVAG2Rvewwyc+xvtZH8hHgnjvm8O3ZXxRHm35g0X8TlpezCaLiBH6LTmcPMmZ3XP9NDo929xujT58oFLY834dH/2XMzckBXXXNzV3k8oq+GV1Sdx/2NePBdg4WHPAgGbU4302OFKWZ87VS9OjjWYrR/UUUmkcIhPfUEKTG5teHxAOV1Vk91f+BH2igDxI5I3q8X+finBzG0FfjXnzBDvbMu5Ga9oZx5gz9bQo6Se2/jO3/Dgbl4ZRqfeM4RvnaNXIKIFQ4c47r6/PJHfABv8VDMJJPJUPa3jmgT3bDFI7x+3kpcUiGoK15MvLvD12pQduKa4lz4S4ZUBShUmde9pvUJKh4dOsGpHakJ9yjzVebcJ4ody01ozSBttTK2pJdbmqN4s7JRfIXNIpJpH+t+NMoBfubgwxNvWhe5zzsJm6bTgPfzCvHdbH83B1hgfgKgUslUD5Urh8JL7D1hwI5thJ/ko/uI0DOcionLFLuEim4ag6L+WzoCMkutM4GKkad7jwKf0WW/RnpE49jOYnSKJqDSvz0UBXdXnRupD9/1kfzYf5plhNwlXci7A8gh9v2D5B8c449Ku/ysNokQ1levJHz+kEG5w7lxcl0h55H+6gbxQ2li3GeVjz0vcGvzzkgWcAWkvUOvooEmMxHiKLmXBQtBYEQ9mDcVKS+AZQal/28Q3cz/PgfKEydfRZsXaNw+GwQ35IsoMeOT3bNmZLEPs9DoXxFx7loiobBLsPZTRx9p0sznA0XNDEZJJ7/n90phDHLr/Ba0umqugqFBqIOacbpPuwThYCuIihqk0LX0O65MkAaW8f49B8whyEzVG8zlducssM6z2cEfRnfVUglz/aOQTo6qKHxGZ1RUqek+q/stIuOhtswtcM7AOXDzQxpwx+/1B1HM+CGJVXpy0WYx1wapr1U/cWB5cJ+7F/PlhbzMIuf8NUXnVzmrWkotiq/QU9WMc9ZcFxve5/IXmxI0ZJXvAj83cQBHZQfoA5PuDAl+9qGzGbOnkOSWSk7X5yKFHbvgmt3ulnNtBvaNjvxmWjR3UmtQN0EhA+e/sC/pNGr87/m8/TIdyutlbW3TInDtiqPnQgd5bebM2ICj54qQm8wbhiKk+t+n++ND5wMKS1LRvvCHMGhghIA6MsFZmbL7yQ13wyj/7LLgUp/7KnasA3v7aPSeqJI0AkaVlE4q9YPeiDtLNsEnWbazUzwb84mNuNBxn6xfkOtGtGDviL09alndT2bs3psoW8s1Ujvik72/c4uhx44qWdprLHGzk+RYHtEVTF4LFid4gIOBPnxxcrGZVzxO2Pf3j53T9ZTj69ZYIZ2T8EUL5VHMz4cZVKxuCEPv5f3J6R+C7UNcXZu7I31eehMDrUujSImRxFGhPr/FiS3JjTIbYYL4dGYRyIN4nJsCxK6yMVygCNmCEDY7ZYUQoR4Y6cVHsintz2xy+szD/a7FDqKuUmTvf3mTS/DTgOleEVE3CrVwVLBz2FYx4MHFRD1NbslhJ2waf1z6atKdN9nOlwMge012clLf02XCg+2861+Xm1bwNk9WMXWbPcFEG6IvtP5b9+R1/ljInPmFniK2UL6SS+XMMXjV+X14n8jvAHQG/3UurkmqRLLMhCajaT+LgVzFn/iFB/I6LLQPIWSjHtTnfWMkKS/NQV67K/aJQghLhj5+Sg6PN3uGFHtMmHbIzHmt6OmhEhqbEoizEr9C1KLXu81ydkuzq4d8aaaz1Qv3VfS6AeTsv5QyiMkcdakNrJtzrrk/YFzjJB8mJz8YZTT9S90QVGoiS/LUYmi9HoTZ3txc3rOsSQqWDw9ZHUa+3jv7mEeAYJdT1iZk71v2ieB8vRajXhtsri6B9KpvRwQoLLEfGT9aFhpVw7i9stnq8RrbhLbDBtLuG2NDelrS5Aj/ZpH2D/wMIsbs4sJSzGQ8oYkSS5PaoN0KEB0Rk3dcUJ8ntsOjsL7hO1DXSywk9n7fmMGzFD/ih9Pa9q5TuXIiS9/yPzZZ/baktGOlxAh7V/cA7FrzBiUT0gEfVVKXjNOVT+3nJ4eK/I2qRl1TLImGvCdpDITzOzSu99s7y6Sgf0U5rtCAJL+cGr6Mz8+BHKO0vJDqEnF+JXtcQfMQqEf381IWoz1FFQnwzOeIkzIuLRDpn6DWORzPeKR7lz5iN0yhbLp/2LPnF7ekNUiU03UI7ycOnjBxzLQ1enrsG5y23+Ctsd84oGRXdD2GhT9btV/rxCOWpYET3nto7DVMqu/j4ARDooc7zdX3wSWFUmvift+7qcFF8uLXnA2u52e33H5W3pKl5vF6ZEvY4tZMgTpKg4/wg2P9q3F+P6Wl5Z0ywYFUytDaQU6mzq8vYtf8ptfL7weffSusPecNKvSuQLwLeMmvQkrTuhpbG1dthoTwYG7QGIdugA3/FwUxhrqgxR1Th3s62XkoQH+XGHijaLdbHNlrQ5K/7zq/mLArGo7vuYETJPMJcOZcZDrlSQEAZjuiWm/e5twLp8+QRYP14eaqanPOfUeGAhqml68IFQyxe+/SSnTl/UAs+WASES0W/pr7fkDgOrSV6b7J/No6M/6vV3X4r8fc0lXJNtES1pLRcmTW+jYBLY3z4xXk3s4V/72m9G+d+d4UthL/3k2OEyRE/Wf7rXNfmaWvszo+k83MO8Kkf1RaIZR3xvceMzV+TIey5XQ4zTpXIzJngXCs716w27SnB23+3ovfK5WaB7Y/gi6AI04LBs5uDzFT05d8wFba1++3EtVMpq3KzvYjKKMEdzp/Sd9DzLwzWxI7oM1eF30hzJAH/vfk9swYQ6PaNWSM3IjkICy4iarlfUMRbfhY6qsU/ucz1X4TfK0Yuk5cb7hxVcZr2SfBSsrl+kY9aTAC1FQUlhHslsTboK560CuQlqk4KGOEvbAYzOJp2iuvzBBFZ8IKN2z3KdZvWGxg5N/mAMtdRyNZB00qG9Oqc5HSqnJvlri2BQrtfVSDBfMdP/SLJRB7DSoza1HmjH/SfOqXWUCbBS10oepGk3K/fl8s1GsW1+YS5Yaow596rDNl9C8mgad8dSCk8qQLJShWJg8Y7ICqLx8WeW/ikEFX1C44UZvl6Bfy9Y7oKoCk0WjrvykKpZLNuN/9zei2PtUV3+MoRq0sq5Mv5PE2MisxVmJm0sRmG3HgFIR5wfocfx8ZsMo+Yms2pqvRlgqiZBDHE+3RaGAfE7j7p5DhzgdzAmlITlJNB/BVGZ+ryaz68l0PvnhwHCOfSF3BNkw9euhaa8EUBbZjdWOjPGwYn9KHRLm00wGCTXUdY7kGSVvDkVS5K43ygatytrE/S+4cvJi1FtHJVDQ7zkKM8HXiFvIhowj2M5z04xv7+i6Oww8lI6eigxJyTzgnP9/1benfb4qeTmE5XQZZF8s7s+xqoLc1aM4NlmbuDCfTG9Mv9tRU+9GsQej0nbq2P23Fbl6PN4JfV7o2u4L6TaWFssw62JjQupaygbs5Yt5IH0O0gLsihtQrLh4+Vz44csLW4vActqlfLdc4VL7Hbaam+sWkXn3GPLGOePgsTPbgHe/Kw/qj8912Q2U5Z9DQPTfrAZjcfRTtiWo8h9AF/f2hKopkc4MAxBgdmCi5T3EePf8uL3YOJhQGK+UZ7iY+z19XHF9b3VICRmvbEVRXYk3EO9TJuMKwe7jhGEGJ6/lqCxll3OC5hYIZeH78O3BEIs8BOvweqtHQ58rc89G19ds9prJNYBR+03H3dJg3X2R1i8qDqziYuix4HO6pMnc3hVnKjALzWFUjLBh6ixHUcyf24pgTyJeehuqKZN08F+wcWuTmLbo7b1PAj+FfwUQBI5CIp8oT8bOvVR/a1t1u5jqweqNPSfvODzPbOw3W6h08cicy0nrL9Mc21S+FWP2xBEfb15yhXnOursnJZPKO2TnmrJ1GUhWTVY1H6WNCWFieh3gbmzBi6Xaw6LrL5U1EEE/qexeLBftHzI7/9iJdDrZI6vCrdy6UR6QNeDo6MrY+pXVEc4R+XZhNqOMGweORypDSQbisjCbX5vJE8bmsL4oCinIThpRFa2FQ/0zPbYkTeaebSKz/dGKXbh5gO37/2V+3SrxLoj25kEM5TuvNGPFFyIQ4JFOVGw48kg3OXPfbY7sjTGm4r4e5v5LK0Xr3MIQqTvYM+AGHhR1b6gwEEu4hR8ZRNaDQ0MfKuPLGXAbGRxI5gc/1zeJjhAvzMpY3Qgqu1A7kDQZyUIgWGa1F20Tc4KDs+daSczIO5mrG0xIHm/j6R+mnfHvVKnCRR+tLu1maqf9grsYURPayZLJGTsqGf0Obf2RYazEzdvsJMfXWHuaFTCxWFMspde6FbqnJRUR3ID5/j+rEHec4Y/pyZqh+DAsrTvdfHNjdUdaWhYlM3XWPeLKvwwP+cEYgsulEaVraSlDbXup+4rTblqlfL5Zj78HAP50Xxdsepdu9EHTlmeVNMG2PfuKlv8vlxVDdGxz7aF5nTdI8m9NVvPu8u4aO0xqFoJgyHPmAHxObLGOSavJu6Yr/nCfXYZH2sGEmJl/IyhoKIRflwvbu8+a4cc+F98qYxwyFc6JYeNr/XTmFsqCKQcoXx0J5BaCfZXxGUqwBv0T3DJwxH/XmcE3JL0lfkZCd118dGMvToBQPQBCi1Sn0416gX4XOTX91NmA8UQZ8LSoGPDp6VxYqV8u42kvzzNY5qKJz7CWFuR9rX4aUzOSdOMoTfUOphPeM/ROPQieT8k5FmvSC7otx3DOEJAYsGdxyZdqhN/eJnYQMV5d/1WQ/mJy2wioJMsZwU0nrLen4/AsxN8ecCO9YEc0L+SacoSe0o4UXBcqBV7VgI4VVE785gsziRIwEJvEQsU2p475O6ep2LEgDe89Af3NKSXRclvWVpB8xYiZPO0/cF/s85lzFppmFHuHeF/OmUuOCPTdIv6xudRczReDhsIEhRF5v/LbYUJ01XQeCO9J9YMIfUM1MJxvTldbGfYwoyDLF7u6ts6jGTT8K6nqowhDeLkTy1GA5X1bgh/Vf1sRGuBxFBa7rd9EcprCDVrzMM4WZnOyazoQWgQGg5hyQRBnc8Bkp6i/JJ4gHh6CZb/twLs3jsotDJzpcoRS4l1Wh7EeBSq6oAvKUllaXhFPyMEp1Qkaj85woXqLohkWbYQ0B4wsAxxfjB0FmgpW/JQv9DZklSNPgyM0jRSafC9Ix+HBOoldMITq4etnXlhhiHbCEg4aGH1Ovc4eeNNeJGDPySKS94Kdc6oT2W/NRzA/ZehVfY/iwkEIsyukhKpmyk0TExveLx5KbKPWzoHFC4FY0wHEwQXSRIEdcvkYjfmEMKzEocyBokweawRJwGyaf7OTrLcjcAK2HjfLM2M6NxeFyFw2Ta+zXyvHOj35fOsv2WO8YNLX1C+XU9+qOHDA5OXVqiBkVG2FMnWwmjTS3Kv6dkIkBA7ncon3hd7JaBn08wc8hHydEN510kCCs2O2KOzRdb3BMTXFp6A+m1ORMpvRF0PWci4PrJujb6qhZRqvdQyOWDoY8fQuMbYJOFhOaZkZELqbC9g4hQt4nzI37f12+3GLbqvm/p2d8+f++2E+W+XXXe/UuE+wX3TG4Z3k2J+3j7rduJGZlf3MaTv9OfKdW0ncticnE5/21cqUD343NO5gfGohdNhy/hJXKHtE/7E6caG6E76BWa9OH3iuJ+NJqMPsRnhj4WzUfhJBZfsja0SOFrR8bT5EhmNlgnuiSf7w0dTNRgoZ5C+Gc68Pvxu2dkbq2aThpuZNjSCpnDc1MpMMTm8Vd9FSKPQMACgAP14bBWHQdVrXefIaLTIVXHLTwnVcFOvdD8zLFjA0Y/pEjUgnzkm479PGtQa1vZYeHCzFvQFis1WZIUOhx03WVEjjbNX5JWvSun2w0yATjopCuYZAjcy4w/zqEHbumTIwfotDkF1aDcUiiVXiFHhwdItxLip/wJv+s9cU/X/V64KWgehv/WcDtpZOCvXJigv7M6f9oanhN4IcTRhFbzahcQzkK0kiNFPFAvPHA0LPoa+9XjVVzjVNp9quFjnNG9AuDxY5xHWAnuupK3L0cOGMJt41ATdiV4QvlbcqOLx7V4BbUjCkvId26Ihoz85z7Hzwter8ORrEZSp7w/uYSHSYmOH2PovyJJqhQGWaQ6yWwMmFO14eRU/wxU7tKvna9ZQpnHEZnTJQhUK12eL8iRDk2xAdd22FhSFfZSaaspUcRA6fx0Nxlrwx1a8VsR/2PHjkmfaE8qZg7hK4OKwUsJSPDYsFQXWdYd+HneLkprURDi0BaOMMxCfBlaUbv5pnimyYPPql7by0SDYPg6eV8B489wDHIM6Kbu9NDDLGZBi+4Lfoy72sjJInRUgj5617z4CJ2Vo058ULmrIHvvkUnNWaA/C/W6JEnTGrv/GiUyJzST+PuYrPJPIEFrNmWzOC+n5oZj2ce2S4LHjj2Rt6h46qXEMUrsllAqq4w7/PS2S6jNJGW0Z8/1bpZ2a7u6l4fyuPh0YIm4w3cHDPIuiVve9vD3x9e39teNLh07lmyHtfJ9vHyWcpRavXjVaNxPyhC9mkkxT/PPRUHtUhXgU9/hLbdZqP+vpCsPZPr94x9FOZIjV32Zo7EcEelbc4w1K7NMh3KOyk2SuTImTSWRY5hrmL76SokiliN0J8ynqchyfB3ZKIqhOX+f9fv383ye53k/7+P1er3/eZ6/0z0xjjYrqnWXiQu9su8b/Z/7GhrnwXnDIz5yALDXz5HKnO5HXOObPchVv58xP63YYJjxCEcpmsUbTc6p12nlsW5fSs9336vUsW+jyNk3T6fC2QM761k7pP0tg/7UZF7SAgDGb7CD23xVAnoCNEaniq7TqTC/VwheREkkx2g5OErLN0zuX4lnXItARbR3D5WwlTh93+109zDSWfBdlXHnncHUkkZjegYKAJ5cC/joehgRHuP6WJf4Rm3ANMm/64rL3OKEgrdC5ABxnNBOafr88cxbjVNZypEN5Vwq4XxbdoYNBsWn3uUBiYd/G8oljsGCFqTIBVnT721wWSQP0PKcCkVWUzIls/P5hwZxXF/fnTBnKqHs1jfz5l9/ER50GE7mNP/mbQZs8f2ZOjx3zvApn85OsXrTB4wQtFzs1rLn4ugYnIVUE3T0w/+abB2qEN3Pcc7qDZXgnVOHhEcbA0hV8lSOID/gQ1+5ZBOegwX1a5+phSIbyuGhTaX7I601/D+IAUxX+lx+bep8lvJePvync7ngACFw9SCmlSVu/apwz7TrqwzEK7rgnAr5/QzAlUFvBZ54gn6lk1akBItH0YtqXXdkpnMje9G90ex0cVzeW07VjQvPFh0OXDE6x52Ttvj/Dk1G6CVck4pAvrH0BLueOSz3qBijTzWmGWPPJ/8+ZCRIkYOCxdS1ek1ClZwCMau0bkO+6UzqetVRkEgjUI2xYzxmigEPdWJ0cbAKA7a190EVpPTCTIVUeGDQ5+5bWuSuiHuJXz2usoQr24RsRUGm/4dhPzHNMZ+jlg3lGc69ISqs8NtifzahtrYUBmWHRSOd54yiMkILLDtiVVOfdp2PrxqlRdIuu32GvR9ZdjyCzBPdh8tUa9gDeXkZdgD24buw0H6g+DQboyTAOIC9cKL4WvfNoV6R1/Hia5cIUFD4MSVugn56Y8xdySZ6ZON6fF1l6EsV6b6Id8iJkHhZALDtdWNTW/uM2EyHxcpAHAJ9RY/WMHxCZ+Y9i85Mrl2Y1FOJpP3cIfWBRujk9h1ZbL3B3AxIJxuEZTxiViinZFNeYEpPoz5pI3ab9+jrswJMyeq0izLkwK9RNy+f1OIBwPE05qw/mqVLTIZhOrkH7T6vh+0fT0ikVgd0Z8OLYZi6ySSF1hrRjZt0yWUFCND0KEeQkehZ0+LHDO+617t5DeW9Vzln2FO23DjrZOY/x9UBwLz0Iixs2UoBVxEeEOT7o63gBBujKFCgz0o52XFwYJ/oUT0tG8McZgguBruolHGVoCiYMBo6iY6qUV5xt22a8Ww4J1NQRdoOJU/ieXEivXYFXvymrNreO8nKMvWaDk9nBIWr+LJQtj0vQhQibbRNlTjFAgv66BfSK85TeC1hUk1OnHpmMmHAbKkZcjiwJw0GsRO0fR4aTLKl1zuRdWjrxuIaADCVJF2rPnGswtfgTnSPb858QTtXaCXTRMw/ehReTNfhLExO7+aPcenXEBN/t24BAKY8etZJQSAGSz4/fsfNaicDy8YgT1ix56wLaDsy/9hjiq7YKfBRL2XK2enxgrC//HcrCKzfEK1dkreXBy5a/et3g7XffjlUhDdKh20C2hCbV/PV3PbVK3sE/TkeeWfcgJGFyLhd8pHubKM63lur2N13ol2OPTR4Zlhb1aZ42bLZDez1N1l8zLRRLWMGSAFA4jdOkc4kbUiSm5D+ll5zrIG8J29zUJ5nHGoiRenWdCTU02wGpr7l/XtGvgsx+SRjwlKhPu7GWLbAAU41rlODHLq5fG/WMxYUagBE+cbjitCaNx/9YOUwK3DLxe3iFDPIv56j25F/Ctr7QKrHOfshR0liUQuc+vfscWoJvaOdO9BJSmjfgbR1h32Ji9P+h2EyEgIVXiGhdJf3Fmt+atXgQQ3qDN6eaoznOpEVuYoxXSWbgYFNUhbd6TWOWRHv8VdZCy+DCQE585BVrTZYUC7/UI2Y5zstvsyfKB4DV06Oe75huh56S0rA397vJm6tpAd94fCpkKyQrWNIEGWENs5NzvajmnKubKdxJQHx6tJDLwfeDsFa1rOKnjkxzuEbX1+5QFaZFxcHpyHHpbofte3CFYVZiFs7cky2fGzVV/l5qoRhHv5jebMIvK4Pn5mnV3bTUtPCHs/BZOJuxnnQGBkFr4MFbhIUs03oWR8hbM63LSUkRVt5qblsOy2elCAjsua61LLtLUbnIaUkZggyBkfelufq+Cs8xwn04dJVSduBwCJmzTutSXcQc59HuM7x/aIsC1PORkV4pdiDyWZwFTQC2XZRiuzO/s9Q5EN25+dDEXDtJ59CnEZCF24jUWi50FVkULDH7Bkr5JeyP8VirqwoOP3pgrOZMf9bfHtsKZZyuoNrh1BJLxrY6V1gXVNuD2EqiGzfeuRlybaCQ9VicOQGVS6nVnpZ9k8y6vGSdo6v7svAanfGlmS/oMm7hHX4HtXFaE1COaGFVxQfpEd4gKUG5zz+nm+38YN5pUcN7LKNp7buVkRrsjNBieLl6abK7hLRvejMtW0GUhVpFjrcxhtPc6cXLF5ZjX/yaGCsNNyXjZIYlduSyxUDdKkGT2oO1I9e0nT98lyYj/Fu5SJ7wgc69FDAoedZ+581MLk0rxNLp/SOWSnbyxlI2XzveN4+sXofA9bZL8vGf4e22Uc2ey80pQuP5+8XmlRIUxYZavjM+bp0RqW/99YO0YutxyUz4iDL5zNiRwZfCu8VPmRMegji/YYXk6zA1PxOGAOFtinW4XF3KwqS9Chbkmq12xeJE554ecGTpIq63/0Qo5ZRURdSfjsf1tu0M7m6IB5BJUrlmqIIDrR5p4cgJVLoJunRuH4WwtNE2tytytD6RdRb3cm4XObS3LB+MxK+YGIubHz2smyin7Q2sEdOzYfOdNKTbNrLb5rimW+sLt5crjv4D6PzO9aeZnw+YS8WJGa93QSle/rBvei+wyXOYi1VPvuKuzZop2qYvV2x7/JOUwIhhIOYMc+NM3t6XvMdEmB2WWWhwSUD9OxpamtG2NKvH5RVteXDV7Kyc1nINYZCOkrGphADZsMHVQQ/shYCair3hmlGtfjnjKmTHZM3ZQr08V3TypGigrT9RR2CeNfPCGbyn+sx0jo2iQprYqQynSzEiXgh0nBjtCv3GKfSptXnD6g49Pyl7jbVetunp2Tp/s3MJX205ojJ2Fr8CnB0hlsz89f4NsOdeW7eBXv7ziek3TXLYDpZXvOEYWyGNc5532JO70wbMxg7M75eTbsl1EXZz0mRC8sxbCiyUWD+FXM0O0Cj4L/wxkGacY9LhultafK2Y/dbLV6GdwgDGDJnjgysrlZuzNQxDuJFOedHK4HzrOlMLmno7WHUiHz4ezQ9vBG1LB/Qrz2RHHuWJUFx7vAthLIK9XCLl1BjMGtxzAEPZo97So91hBxi16x9+xsVE3tx/lN8NQ3Oc9PVgAoVeDhWLI7uO4kKwPoHch/bWNy+ntf1EnEtW4QYE6aPHxmiQSKJIGTlpn5iTC7ZGZatN78lDR0TsRe99tbu66PR4YL6SWO0U/Z80nakpumM2/zuVd2EJ9v/L3Jmbq5c0l1K2cszRrL2D+md0Dy1WaiMZ/dCORupsdwojfoMVR9py6f+0ez58uCR/VOu/3wZ687fFVPt6uN4Bt12ziKEJY+kk6TINEbPg3cU1d+XqyWNI1r9TTdu9P6xosF2hRE28o4eHOdgDAlDhBFuVsm0z75NPVwSmuP0azrApf9un/f9hYOb+UvzjNgD97wqT4E/7O/GQIkFPEmWlaKW6E1W3/FpMnsKl0K+yZxm1h96bySMf5Gf7QJaVqoFOW2B+pyI2MGae57froT4FnkIN/jl71wYzUaTWBG0PKGcdVQUPNNVjMwr5+JZ/KVQ/qN1j+JTIJE7zJtemGhQ+pJd+uCnj41pvW6a2eVOdK46vDhm26hZoKo2LxPqfwJNzG44WYpbpzKaqyPov+x0lnp/yARXlXFVkeSWXyI4dMoWEO5FcXyCPT6VLEiSCxlXSjLxn8Nv3m6JqS4YCL4ugWfPS5JhOMgfJ38GbCdmrysEhOHEKR9383+4/0s8gtN0rjlHYyI6Gu0blfrrlrKdCmXDlTPCO2JPUBOUNYlQPUoMIkUWlNaNr7YoRqSkHXBn/6UgqKIN6dcTyCRocWRebpjbsm1n7D+Qw/iQuiLj+qjVLBdDd5CY+zUUp3m6LW5H08wGrcQFJCr/rGf0qG2cxOYxDmIgfbhmMA6JJwd9/phVdBfEXC2koQtoJ0W74hCNgZrI7wjD8fF6px0C/3ex+8UHdfnRrS+PqgLy0j1Fr0fDa8cppbGX4+r9JZse0JpDbCKFlmtebnQ52LVFlqZZ/aettRwmDF0alA01zJGioOa4cCBNBsexUjPZ0ZfbYCOtF+zA3vGWAmrJaY72JJCoFVtWeIVEPvYwMPXZRmNY6gEFQfnDz9/XwImG1aEo9UxHjt/0gTg9ayU0S64E7vIbKQIsk+buUb9TtcXuXySs+df2nQmxNuJzvOcK8xxBCq06Qm5QCrh5VZkh5/jwxUqiLn/NiIdbYeLt+rHsiYRl4Sd18Gl5szil1pc6kx3ZnL8NUjWX4NaVzEBLiUEEf7HjLEOeQBfUisRd1MU7MmKA6bxiAOJoWMp5kyuqQYgg9dGb4zXjid96XyNs7T4idoiv+cpIWD8o96bmQ6imRPPagu4x4GfOX0i7VNpfE/tAtCotbrUZ4tdEzqMC7KDXFBSsOsOnBz0ggrHwGzJvcIEa1ERSGeu7Re8m0eR5A7WIqbE9S9db0rEyZBVcW8VMW7oxdPbj0Sfy7gt3OLD9NiCONIyShgZLXTKyplah1Uext7rZ+ck1uJqjYJ3DslVn42rxeqinhDn73lRSp6OSwIpGELqvJUC/aqk1kO5plRLNZ8orf1zxCqot7xyheBXvgYbAAh5+LDAt62EL+1cpCmdTs76aFhaC6xuTfcP4rI34OjktWqi1fakjbhMAwte3Hje31fAxjYiD5gI4LMGu+vBZ6v8AUEsHCASb1g7Q1AAAZtoAAFBLAwQUAAgACAA7gFVAAAAAAAAAAAAAAAAANwAAAGQ5MTNlNjE4MTYwNDNkYTZiZDgyYWMyNzI1YWQ1YTUxXFp1ZyBGYWhyZW4gYnJlbXNlbi5wbmfUuvc71fH/P07Iyl5FVlZ2srIdkpWMrLKKigjh2PvIysxImceKzGQfB5WtnHMolHXsc451cI5sPs/T6/V+Xd9/4XtdfnC5PB+P++M+buPxfCaa3dNnoOOmIyMjYzA0uG1BRkaBJSMjT6e5CPxFw8ToMRlZFJnhbZBl0NRGAXWQpdXUgD6OmUbk1ytunQvkrO6sBngiq44A0ZmqD3KNE7wJg1VvwVqsAsf9T1vaZmebt2BrmCmHUC4z7Y8TzRsReGX8e7+MzO+ebM9uBq6enSMJoV6DdzPeq/W0Y5Tx4tFkEAGa/z/99ErJGmkqgGZXB+DX/kgfDr5K0/jiOKTJtaH4iantWeRlrNZ+i3Ch/NBFShAz8NMr1m61m0zbnXMgvtYeKfDHcx7aTz7ExxOgNr/quoffHDvbIjexDuBGRTqGMz9iH0x7YaZVveXxFz6Ov69Ver6pwdiNlt4RxfT7XcKlpubjlU+0Hp15frO5SJzW9Ju/z7BXmGoZZ/jBWCb7RGEQKRKZfWLoa5fOb/TBiPlfAOmUOYRA4WkRI1iAm1PkI23a+ToaF7EWr62f3CotxwXUJrdYDdE/6RhzExLNx0bOWrK1p4YaYPWzBCUj1eWrQVYIOyGcalHeduzt0616EbRbmKR52vPWMO8dQpvSoEZGaHkCIb4kjTL4xqAu6Ixl2RtUSLMbyNB1KguKuLIslqEmPOmRf82wd0Yq2GD31XIRqPDSbtbJVGoFw0DkcJH80pWeN8F3fSv+kyvhNd+uny6+fLTfONZilJrujNlJYqh5hWc3MD/iKNUMYQX5aoYhZVFQXZSQNKY2myiU7beqNbVPRH/9aReUS800GmkccRmm62GzOSU3fhGfrnXuCA1uO1/nlipCDjFdiBAqPwvc1Y1Gf1/q3FUqQBuelfGOD0pY/TlvjD5eoaZmGlxyWt7fyuGXuMFkfCajlWw2oL8cz/KjNCPSgC/n2smroR0f8WXTy712hsSftfNXuLCfz2pOjlSSSnmf7VvxK81I/6firhBGlVYudxpVSt6D+yghEcx5dmX94X6YeOSZyZ+zrorm2v6AxSVtApbdpePz/bMfoRmBIt5Gtr+daHZlxee6c76dhrKdCRyW3k48CJ+aNIKP3zg5ZlCHFpfNXJ93F/5SGlfPz6BgU86vvP0q+jx7QIxCWnLVlLpEbMUaclqjfgfi+tBHYYk2QZPUrdooQSwzmEY1CtrKTjzPpTnKuQiKdCqZsloCs5yGP7eX1DlNPuI1+oUem/qbIwxL4Cm33xGj2H/e9sY3ljukbnnm+qJqlUXd8gkt10n9bS7ihPUPO0ksMpi9tFceabyheTfIkc8JteUdz92wTU/7b0RI21HyQhhB8UChBLFK307DLsPnIRjprv2SvtNzEe9Qw4ja0rk8WWNHuaubnzrqQzSPaFhIHRD97wFmMNm/R12uYRZ2v7Fsl1DdYYkc0hkWGvrOOWBj/7r7/bwQaRL/P3sAW8IwVLPGvnzi7a6OituvRzzrr6T2T19ufil0XhSpq5ZbPJFudh6PHu+ybv14fv9/j6fBoC78YAMYP+UpWobqVOhf5HMf4O49Ho+hQL7nAuBPD86P6/rVRPWbb5Wprm1+OVaqRNdzOt8GSq0ujGMmTng2x4WjSluZQuBGR44U6d7ehiFSLbZ+rESuJ8fHXS8iUyBdA9uRG0K1tTO0/+Jls0Cg/YdCL84FDgWwtWn8eTxKbalVcVYkCIQll0Xk1cwEd3SjH6rYYIZ+B5sjJ7dcU9JG7iH8DZXPNl8u25/WwOp5VJQjtOfvdO35VaveoVkUrfKrOmNqe0N8uaJukVFXZn96fP+w0clILgz0mi4Qi35bQOR9yNMxgOKsDHCJN8Q8yPETwbr71KFF30HVPJs5N4EDNPRxA2fnS4XqP0QEwqRQ2Moim3MxEoLQ6PtnZNXgUdsZZfo6y7XLYTnFbNECCeclU69MRfQlcGvHJwsTgomsi9TlNI0HZxaviUwxM1fd5pTt/YlWA2EdE4KRdh6NaDnw36LsC3vV2m5MxNt/qE/leoBxwpoagCafzv7DA3dn7+UrSUuN5ATPEQGgprJ0IcIrMx+ZKrdK55z+C7+L79mNrD1evLG/3q7zDXJ2KqB8sf2eb+ey6NBIRhHloU+6WsyMzGHiMuOQRgZ6kIncFoXPtoioX1a+GCF2mBlgea3+ySny4lbO7lmU6K7RTHaNltRhKLT9sxd7kMvTU5+YLK0Pp5r+fM5v1ETWYmJc7z6ZNeGY2xylt6sBoU6FsPrXMNZ9LOEKgv/HBwkYv9Zew5MiP8FTWJkWj4hhPPTYFGUnhLEWurxX1IfV+w+yUYJYrXfHnUOQ7resZp1o7i8W5eic6UAMVCk79yBzubhY66RvW6MIkf/RjPMbJwOiyqk1x99IqlwuyZMccvkHk2kBtrP7HJlClBp/gULlR156rM/83/UNkyv3WC3Hz5/mLHqL4Oop4Q1MIddoQzxa78+WDqn+b9lFinYbIbIZyz9O8ldHqraMJtC/npwy0GfVrGd4BYQhBdYTpbChJgcGhbL/Fzcz5XNCZS1tdu86x15gecI0bUd2GX77E3TdogsJ6Yx+K8TC/L9/7SWYJ1Gv6a4GvhLEeYpjvZbDuuPOTlt3LIT+x5+JrM3hRVUt04YhClSzKfl55Ob/OwKIVdM9SVNks2PKFjXy6iSK6njHV/B/D0Z8T8pg8hTW4IbU0R8K0gfMr/wvQNCJzEYyNyPeemyWDsajYnP1VSVpw4Ar168Ivb8mfvPq+yFOdu5U1VIRCgXmZYObg/+o2Yen2X+2kIYWlp0V6Xwh8pwCTkkDOZDeNMFKGuZcfyNFa8FcZv9aVN7Bwg069vIX3uNVJLpJ4CloNybr4lDm3ey7cmZPhODPfF+wP5cE41a77Wp4U1rlOaYmX+vQD5t0Kf9ZtL3c7xdzMJAm5Wq8eynrcmrArdnW3tUuEZmzO7fSRExD7x2QkQGkt1P6NwXNBgJNlp/cZzs47ni5xkK5k5dfYRBnKGqIq37jrGJnwfXk7YljOYW8SZfNY6i9hTRV50O6kI+ibH2spTQ504Of3l/lai/TUePkAUAvBSl0lY43deWxurLYTpFzUOpCmNljuEm4m7MY2L0pmjucGS+XWvJuDcIaw2w39LlkeDnU2jJ251Qic7rq4eHxSGHmTmj5bkzLhaFbKZYkSM+49e1slIUGlp0f+exbxW4MOZA+p0GVwFz5mORsC03lQdahXQHjlQbHz2Z0bTzPbM0kP779geqqy7jc13VC8zGBdYXvm9HBHhPHt0Oojn64rTN7o1Em3kTxaqmVHEI+oSHDTdH9i1FdEoO+5GvpGx0j19utODPsn7aZNr1nWUC7/r36a7J8itqLKs7lPWhGcIPURW+UL8TjEwGwshs6xIiGiWqxawMzYADCIHZohij/DDkKPLjWF5aSRRjPLVM2MCyiAu3nQ/WP221gX+4ZCT2Qk/FhfiZfPIG3wW3LZ0+ZD2y1SDDdLGU4t24WxSrGlf7ZBycqW08J4muNtYauD93muit/VWyYyfP9GStw9gr4x4ZWDoiXCMbJ9hNXxVVQ+m1Di3TNh9RSdgGLrlS5khiPmJpLvjVZRGD3dcgWwBLgSJoQT0mRPYOI/pQbrasRXoWlHMxEZsWLwy+6bDjdHjyelNw0mpEbmFUNF4Y/M0gV1kL5VkVneKsZmXS5iuAD0MqZoTSakANl71Yd1OygijAvKP2VoWut7gBvpeFnFyVZ5qr8xlf1NL75WUQXERId2lB11gKk74jiaLx6u3NKYOP1ifZ3KtxJfmHGV9BnYTZAt6myxO6GfXwjcHLKKj7mvmz4kUFk6tRYOvVnExpzZ63WS9kFUvblpYKQzbf7Dv3UOuteydmVsTfH46muZGxoE65VrsUUPQH6Y/T7mTXNEdfjKAEa1lZfRAGzoqyyU0CEZNlLWdTtk1uJrEQXgX8ahFKDDlKHih9YL6mT5ftYz4cXM8ez0DAc2nDsXusJlp1E5DyUGnMPp1QD1YPFd8rJCeJiP6+minBaOD0CNYx49jdf/0CVG9hgdqEekZOr+aa2mDLiFfvBY9CdYSbNX9ycJ/5awVt7Qj+Nx/Scufz59+SPtrg7RRxEJGaF1yj89x5/2xZ4nvE1o/jizUsDxdGreo/ijX8RW0anfMrUla8wJitevaJY/m3jbG2niimH+Xx1VtutiOBGo1qFAzT/0wxFEL+Iml/z558/xkb8EJPGWVDvqP9oD6ISO7i0UhI0qefAsMC3TmHu2jA01mtZsK6ye8sutGDc7ZXOob8dPYyNgxyzJzzzaGbCIidcZMMdk2jIKrL5J7ct7S2++K6Jmb7hG6tdNfvXhyhtwhSN0cTx98mBtUrj8FzR0yNqsh/MQ9rBVyW6+STQ6DvtE1ShZb3X+1zuLj9IETUTkv0Vz77U7NJC4f7qG+WmR+yRwJMa0OKAu1b9HbnkXwaTZpjLpdysampllfoPUYJrwIGs2kLq/t7CMH558udKnrRaiBEqLRPS9RUD2Qqobp7Yitl6lqQIVKxTsbpajTZEwSY9rQyaZ+4utGE0wWb4OzsfY6Aie5PmKF+boPSuqrP2DV6PBtYOxbhdju+RfGP1ufJJ0BNoO2uB+60PhsEtqh/cz/nqDNvPyL+8DHbgK34jE3lucEhYa2BQZvHaOxj4/Yh9Y+eiqLsT5uGNr1TuVRCZnaN4ofa40pAwnChSl38l3evr5U23vcexZ4/JNMm2Cyv5VXVA52MkHDetqBDFvv98v6cAdmjREuz/l8Pi2wPUpKGKkxhVeDk8RaQw/hvSn/lDEJq6QK7uxLNFv63L5uAJfXJopl149yeONpbza5lMfALYUQ5wq12tXojVMTzqVBMbrH9wPOvVwGkIKsJZ/PY3N301fAQURmIjOHoVZ9DIAOmiAYQixOuJ7eVLrY9fJUIrPJxVhill6WGzueR0e6rJtAppbmZpggPbGh2YHJdd9ZTkX11KEdfT6wr2QeQ1JsxJYcw0VmM9HERZB2ByFoe2Z1ojpvT0pYUtRVfsaWEZRA6LHxwpFiguQ1B9C1ZYXIJB/xmMauXz/XJOiATD1a7uPXYKPc5vHiIDd9606OR4LXVNOc+duRKl9TK0CWb6419zr676+bGeiz8Ou+UjfAzt+OMsPUc5u2ntYY3pu5s/8hecRuzarmLLdfVN7sUjG4MijNJHWu77NVZ1ZEKRTSx/x7S/cyzsccz/XPw0srUpgG0k9TolKzj2zDYZLf+6g7e/u9Rmo1aT3Sz7qEabkB+2pDIu+df2yQ3VPxzAyWZpYOa93Z/JAVngh/tIe0Rpghi/ChbBzIzm1cspoz5fUxQeg9CVxCQemD5foebon/5FzfVMp+Kd+61cWgfhfZCyUVNe+MjsRsxWU/eRJY/R3VcPwKusWI0PqhUh2UboOWO00shIIXaBDiazpqgE4fPOqONk+J6xaCYw/UKRwy2afVf1n5rfMkLVnhWeHWdXug4puTT1oRUy/RXhjk6PmOiXeB/8pdTJBrdCzrLpNb8+12PulcRdk2X8uLtYXIU5+uTAO94gmVGQK/Wn4TLlDpVMmSc0znEo5VlfUBV9sEzALVWW8TfstCcRZgSNgedjL2YI9k61s0FgobWjT8HjqR9x8kZTvosGY1Z7M/dQXO9oYF1m+dydT1rGc2c1sV4ttjEkL2CO4ljT1Vhyec9+C37kpc4dP54mN9hxFuLsCO8IW9ZB1b468aDX7CHFRg+Zk0XB3atzux1q/Z+5fk91aN84WabMjQ8G3dGGh996NKESaxtq+nvg+aKXyEa5jMS6Eco1L2y+cuKe2TUupgxNy2HO1p7McvjbIYyaHRuRKvotfR9uulY8eGRS8/J7t5ifESvPWvM2/2/4NeaoZumWrgW1XwxGKsJFhSgm/FZqW9oIHk817UE2N89qGUiGJYl7TtO6+nJVO/zIaM0IJeZxU+uCBTlZQjQc45H9sHF82v8ZVS7m6ST37dnr2B0zQ35PQezTKYIlpM671bq8eeHuEeQIJnhX0jHpjNvowmbZ3NbxPQv0xL+GZQAsmncKdPrUpDp2B/xe2W5lrk3DoeXv5fHjqEAKrIjh8oY/SWdezUgVMPhBpWHl+OQX3C78sWgz78PYjfnk+7yUBhRkAv1+M3vBm+WcJY6lidXmv8ZbUt2N0iZFOlsnHthwzIf90bR5bwBjJYjvBgc7F1DwtLdmHCWKOts8ujVF61SY9XFI1Mpn7/JNhaHRVvxw1q66xevUjOfV4ajZFw1KUo+6x3NZmvtyp5gchrpnrT0c0dSzI5weEZzgigH35sEC1aKlZZf7acr3Q8+FP1figXDvsJzXkzLnWRixe6E+7uJaj64r95NwCNxA7JezNVlUG9deg1KJo0u6L68kCLnjFqrxCyXXmgFWzMkrf3zA5NXuoz4nyfLA8r5h8M/ujoD1YX6FMu60XYoEhcxSmfXncUXG8icFX3MtGX6lUqyEgnipr1Rtr+Er0Y9r1lwvp+qaVB0Ybet76FcsjL9uiCs9E4zaiXAxqfrSL42cedGw6gpS5vl6w5wNHE7U/SC6niiz5kXlkONDmuOykQwJLXFlO3avt7dnP8i8Svcji7LRC68B/drrWwCrFJUWa6bX7L7kcJBmdLWHmvFPaOhVv3VdCGcJ1VRvOn94h0cRJbwutfIjur47KLnhiLfeK3I/KJYVvIcP0tJaa/fglyijYnQSltZ4eXDjdDSOiSn1CT9Y2a6mLxNqKncl2FkUmyiDI+eCbFkjSBzW9ABmAEJmXqhD/rGsTPUshruVl/6kYk0M/BumbQrfvuQQvLmP/eGH/NBOj/lZE+xX2QbPMpL8/hH6UtVkCFmK69NrerRzzaeour479exkPx77MccJyqT1x/S4++wCZix0ukPcXFY+bNtNBAODhvp8bZuzYBel3Ahkn089wt5OVya7epaWNzKk7Dyz9uNFW3eDs9adYzMBjfmIJMV62iNLE9S4c0JEdRm1PZ1q8wXARlfSHrmJY5tFC2z1OCh5hbmRnTt0s0eNapU1VZDdDxxmq1ipYW753Js39RPrx83DtEKTo7r5srMNXfpTOLTk/bZeHG35oyuOz/5Cmfdi0Gc8mIm8guDm37axoqv0MT8mzdD1bzYd6gam1h9/JtRyauR5aecQi5nBZA8dRkzHzUq0rqHgoSlWfXPPkxSX6LY8RbDAdIQnMB11FN0GoQQBlXNbRGNF71nIlzCkn172BrMOAmS/izsP1+UP36HtbFlygC3l7KN8xDzdMnaIyW8UfC3vsK2h1wZ1EPs86mAahru8tzVC99ib8Kgu3LVZsXImE+nBCjalgttaXesVRKy86djx8V/o5y1eQ9PMglmdB+JF3oIYI5SH+nXs0QWzYM7K6fhFf2oo0J/PskMahzt9DDrHOT3ecIIVGe40s9wx3/9uFugwJiSOTQdTgkquYWcqc2wtEePXjKw+vxmY8WMOdO7CEHSJPzxkR5+ij+sudyEWNdTDXz3qHSSKHhxblzFcudsZss/qPFfsQj1AH+CLfCKncJbs1zKGLgyBBPDNJE32qGVoDlwMN//BytQ8Ln4R1JoNtkSSby+fhIRLKiw5YnCi40EV0hMzNCHRMdDjp+86zH/9N5xrMlj45t0H0JUuzJ3hJy5MIGofCpsfReGnT2Hzn5M+lnx4HZdy+Z5uPBPb9qQqrIZnJWzwU7GJlZ+yr9edCkRBb/5fNlOV93xBJ3jiavz0DnffvbHs5Mkr7yrMF81BRcslIZrc9YpkPlaxk5I7R4tB/X0bRCviCGe7fN28l/3tz9rVVdXHlcVbnWG/qVPLoLq/WCgTbYOSFB1vf3zoEkfenObFKFMpULicH58r+6LSm9WP01PIaGKTsvP8C7kOol1iri68w8ChV0+vy/s8wtLSWuf7ZE2Jhxe8kC/y7LnldClaXEZusI2l+VH+JGV4RlxBGVPP+iXtb9YLViJzCRn+4eeEj4y+dVsYGxDT//XSbVSS8LjS9uafNltI0Hzx+Sk1b+TuHUG0une+XKZf7H0OBytkOx3fQlIQPSxgXWIVXm/fGne2i+1h3sPShgSnUyldB8num9lp6KQGSHyCGs7xH2KWFIMKyLebfzC9HaulDM+V6r9xX0GUMrc1ZX1lqWu71bztA+D7m1R1y8NyjH8sw+3nxCi4tOefBkQGpG8dznYqhLxoYfYWwajWfixpzYZKpnoFNlVOyT5ouFTCxwuyWff4bRjSPkAZXsMOFjPkpwdRkw22yPQILN9RsXlyYP/vWEH3UPRNiMorerv3JxXst6NyVk6q+O2FWkAuC6t6s+AN4VlDVOg+bhYQhq/4z5+7Fhjua+wKWMdp7TJK2pRgLjIWRdahuAbz194EqOqxgSVVbHY1OevlybRbAtVdNWw8+JM/5VcX73SiRDijy4RoWAnJv1SD9JTuQqAUst9V8HqaEToyDEbGHHbFch9jflLeMQxkBYusuk8rhlPtGyBATE3OCFXZm/vzbGk6Y3boxyM5JPeZzcdGHJKRwIZN08ARZGR/5j5yLGy2PLsPSX31jT5hjtFQn1l4AoLwS3vtyUzgDowk/Gltmyev31kQO8atrdezlWg8Qn3hxJZ4ieGksLD8xiwCH+7BHxc3e6/UyuEK4rokZadLRaocG5hKi3Gua/NQ2akvVACOcIexgx1pvN5QGc1JPm2epb8iKImlusdB5J/xXQqCT5CRxUDVDI8MwMBQELlIye21QI0v6hwqJccApx1WwXsivo34tQTrgT+go84W0c8yvNjBVhquKvwAKBLWOFFyYnymrecnMkeH3pHSbcQ1SRyx1u564NjtHXl4bmiNSMH7h+mmkSEH5JY/e9iIa9oE982AjEK8HCiwqlDeRRBLigBjC/0eKgHrkaYsWAnroCTpiDwxXWvU5rK9lPqrJN5tVvzGoXZCY5XXOrakTnj2LspqJb96GeMIJj89i+5G/T3lHx1wijCKPyNk/67a3JxVww1Faujvn26C5JLPSOwD8IyzIIxvSMNZBqe+cXpiLFtiMxfJg6fHINyjRbF7Sj8I76DVh5ifL7SpeMkezbiEJ9Mb8tOCtO6iWnmigCYYWyXVRnSKBma7wMalPl8+fJg9GWF6Sd8Ul+d7K7dsPRssgpXC2Msh86y1W882GEP8j9VqQ67CYap4u4jD/XrW7MCz2YIOMGf1p9byMj+9Ipuw+DL9u6j1p9OY7DYWsCAOGCuyXKhreyW0ESpWqjaTlQMJe0FOumRQ4gD3e0WwUvIGuSPaM/wcHxfgMsf0H2WBO18jIAhfBAeBfzbAuDfWmvZYUdnRlJ5nTVzIzzLPUFXWURmgrJCN9optzQYuYnAuVLYZ6jg3Kfm+hjYkkQrgpSifgddSXBmagI+6VkR5+Ati8FoVIpBQC3W9Nahi432jl7f3aqFH+IAsvjg/ke1VFmHb644hjNW/tMyPo4CqAJPrrYK/GvJ3L2d6Y0dzv1+SmKR18pbbphb6XC/WHK3V+WzikhSfqyxWUaYKcxcWP4XzAX75cYs0AuKzUtjSmORW7aFjAXCs3WB7AVR3jIXyeWaZODnTq7jPdm+i9Ra1a4KxkeeCnO73jzMkk0vmhHEWqHYIwu7TjiYOLmInVdRTiGRKDN6MPB0QIvbwo4Vf5fK7lsX1EfAfa2rjyuzoj04EknirMITy7RCR+8IBvjJbMZNXyATKQ5sABC0N4RvmAnU1fbk7hmZ4NKgGETBnJ16iVuG6AJBHw/JeAX40n4rwKoqQ7xFr/svuUiDTa1kbZLCtmuw2p4dKKzfneY4+/4fs9YkEqnVV8AbzG3pNZGJ8WV7dYtdvqmZg4ncsvlRMf2l1ib5FFuW+Plaej/l9g3v20ZtTRshZeSwUzUQa+7cc4C4NBi5NZsm6Tpy+DuzBcPAeGNjP39AVhImdDkLAuFZmXpwd9aE78yXcq65/DB1jcdpuV0X2HGqddntv89H5P3wA44EoPPzi26W9qAgqWhPA3v/PaLmq0YQowb7qILobvt4di4V6YHhI43X758/YfF0U6Ec1Bl7ATR+8zzebd+M1TAar3lsQGbdviIldWdxU6T5cCJCjLMQgWv86R/4a1Tc31LuicfQjM51oJkYCFjXOoE+QQiEqOOpilwb1JhWZdqafchLZ/q4P/+8tbndRHAyq9fQWhsTNU5Yoq1heyfaYd1+qSyTFMcOfv11fMxprD0Fk+82JafCt2GMWxPhLP1e9FsotdVQLFdXYG07qekvUdpMsxll8WTJHEa5SajBBGMnSNx2qjFWQb4XEBTFbwg7S11oHFuGkxkm0tZdmpQbqVlWYNjz8QnD1TlaZJAiz+QsxFSDT2YiJeXWLGs57Fe+HQDY0c53oGfNgm3nxOiiK6FiANynDy6ipOgcv0qiSaXOBm3WRwvRgEJ5WJTAL7IBCf1LZ/6cwWG2SekEokFTb1irPq1eBxmvPXpuPBY//bR7g1QWUtFgxgsL4SIWrUFYzym2krxA53mIsw+43Gy6FlS8jAS0YWF7AUWV7jyuNKr8VFQtttUA52HsL/IesZy/5xUNjlGJbhXjkvWrSv9fNwlq+XMcZodotrnqoaBGL6rHzreecx1D+g1XjHbzBiaMjdkts/yTZgrqiec0ZKcQS1BfEj9QqWhDAGM1VhNakILIvANzT7qZMRmaBOtTtH1KqFNwWChfFLjiq2dGEXJ68aqBKelmYHjRzmudEe/hMED/WbEwPNrexIgLykthLjxQmqjzGnY96tja5Z+8HbE4nFu9G1JRQ58a3qlmhuEJqQvhQVQ4BvoVI6CwZ2aAS8vlZcN2L9RNhbC3LExGsU9OiIgk/L4CoEylkt5RcEFL3VZRfwzLAjncRTJg4kdMPRXOihaFtXCFzXHNpVuAHGkUsn5wE7g11TGZUU6obNDCEhUY28ZNBIXwv+Ra3WulCPFZsaY5Y7ENJSWt6iGrkpdTggTBOZUR2EeGXhz3FAKPAxCNnL3WdK2kAto8u4u1/c6Lp2DA7SKIINcYwqeV8GxebbOLL+A7ChEfj6siOA4fGvNdZcAy8aPLmcGy+/D9gZCcWR68qvqqZ73KoYqI8Nehtsxr3I2XrDSu4wvShIBY60rYj1vra6k8BpYPh0VsCIjH7ANjLADYe+14kHImJ7x2EMDFuemQQpyMjcmwvy+YnhcWn8mJbOvDEaiiQvE4JLJXMcv7Q7WPyKHx8K9Olm9cGsQJLDFiI5jA1JKLM4kSv6YiO1HcCWIG6WwFLiTpwtUCA/n+132c78XZA3T/6gKJIO59l860zDimTnQc8QuKjyQrqXIl5KZwy2qfjltiC/fJhD5MWg3+aHwhfQRuUyMBGAgYTVHYZz5XyN3RyaXX5+qAxwMotxjzpYCe+sD/QtjOX94hL93b4kQKoPylpzp7uzmuYUXZwXQkB/8zQRmvgs2a9V/TlLj4EVQQovMD2ypwYr7Vyz3SnKnVnUZa3mkqRTDSUggxkAyl8aq7nerMcKqaLGEm0OicHoCehCoqBkXGAUaKfFBj5VMsMe9UC1n5fKC0r+oQTNjf8mwQlhBHDncLnFl3buRH0X2JDozHhq6cCOHIM1SJcnVpDYKXjx8WucNYYJUoyNP0Rszj6mXOdzWg8lQqd71yA7z8hNUMHW4p437Yd3TJfoMGPigJRMLH5yZtjHm9rnRZ1aCjCNR4CvFkngYUjYWeN9noY6V9TgW78E30F+ymRHpOMlqhOB1A8cIZvz/F3hugO3fLM34TxOxpsuSUETw+TLv6ZLVGgmZ2B+C3l2vy8r5JtWifLLoVsRLeTe1YgzOgFQImMP9ZCWhEB0vzW1Xa+yNS99/MqUUQpyJ/xiOwQ9DETKv/ATZdsuxOa1oT7/pHuaFsgnE0bJaTaOu0RTgu0GRSSqoL9wjYDeNPeElepefhi2xUjFPUHxpJArbmVj0lVf06Dx/eEDjupuw4taFRtkCPL9laj9V1nqmtvZoQ2Hm8xg5H0IcW998bEdFHk28r8fFORtdagImdQ6gubi73t0IHmfBJq+lRBXTgC568o5cOGrBH/KKfqs41Mlf41TH/R4XK3E/0VzMKGvaKrYeCRgxROrNDX15ZrL24lhRnsTQ94afSK0vVo/iigGOfD7ezEH1F7WX0+rIUVc2qpVBqCy+rfgJrTUPJGYT8dvfM3AURU1YgZxNHCPM7v2XwK01zFr6/PH4/oxkNDHVHZUdOGR08AhOyqLyTQbS09RY/cG6Pu96HSKP53uZSQDVVj9AYQssV5deZPC6npnz9VQbynbc8UhXVBud6y66I6pbH3Aa8vgSU7CN06BPq84uJQo4D+XFpihdWMUGdOG5eTLg0wxNdcRFroSVBuJxd6NsMJIZkvTiwEsd+nIn+e3rNJVYCnB+3DoaY+6X7kc8dkB44o6sG/zlWxZdX4aroQdRpVqjCBf8xmGWJ0WPgohvVAwZ4MZGf2wM5TYvVZCWkhtXxABNXJrq6MZ0dg2xBgcay8hgRWL8Od57UZiPrLPkTz7t8/pLcpgTe+edLVEwuTq/61ljcdjPWlmiEyCkpBE3JyQ8W7ap0+OHyJtZsmpCAGOhlsidI3Pqx7SQZhjEo7/CqtnJoD0TR0FsGdnP4S0PhPUPAcBXG0ihJNNPp0xBW9eIFmyj2oxQ6037O98XKBAw0AR1tXAn/g2EUtYE1jUH3SfZANx1+5Ay2yqHoqhz0c3Quz2Jy6CFbirc4A0BhLbwVE846zGO4KMxhlbfnLspl5p3Sad/bCqVKXLOKBcWHoUvYnmfmv9wqcJLDG9vN9dEdkJl82hcPpKHnJ0Ex+SBqFervHIlh4xvHLNHpYfd/V6g6hhO5MPrc5tp+XRPAuAlho7Tub1i+WP0ZuF+CT/CYy1CKCTW25tgaKIrk5wN42qPES0wBfRykAV+a9QciM2Gwd+l2K4r7IYHBZTqttTL6+IwnDWMWGMm4ZqcqEQWuvS0kHZPlRobkwNSLqFTObfTBTI/6p4Jf1RauACP5a7YeiyI2ymRKwdu0/JycLk8VKzbOVJ+fJ6VlPCWLO2MDACAapzz7V9Wodyc0ggkmwKOf6Ff6B7shcn/8pLTr+X5hyS/2wLrPJH7kLOfc84PRHltQqsm+0gXlrhab9PHr5LKOu5UFe/iCkEFovDZQ27Br2fS7U7iurFg2XJsqaPTv71nB7CfQlrILvGNCxox5qc+V5ESE8BbCVS4JfYkX6FB7vCu/Yergiy0Zci/S6T9fDm44bY1jOj2W7961tuZ5HSGnimhAZF+bcdAvgRVyZYlTwYUCLMXnSAEMErV4cfsITVNyWdTvTjx/eBTSG4Tbxnxt9DxTyrYKUN1gaW569Uhj0AzBYUXXde88emjnpvy9trNT3ZVoba0461NupjAraCAudeDfatHXgIiS60d2FZ3rsAOUPOsED/RFCDaonASWrNqqx7JWdNGtOBS1sUpjXea4lg9Fcn5mJ7qhS4A/n9WBkrx5Tk4jkZK2PCOZuSL9BQ62tFD/eGN8l3iKRd+vpTQZezWSYiD89fvEye8DZFcftLdk0zZm1ga8QJ43GiT30JqqBohPQo91gt2fG5E6PdTvh/EB3Mdd7zt4QxwYz3t2FQnURgINdPL6UTTpiz8tRCs+hwPrjCHpa1+jmEhu8I/GsS0MutAbQAHcrCvxFOXJyLO6sXm84b3u6MhNbWcF4r9TD+8i8mu/7z/oz4xP4dPeALj781/vHO46LAlhjASxZFCUz8cWfZ3dbodp0RwlBXOCi7glSVj+BA9MJ5txAUj+QdBTg0eK4Xh+fUkQmDi3N7I9jwNOzgWMzsYTnJ6/sueVuOlzyxM+UE1gchDNDRX+uoLslagY+h5/rN73YG/50hsh1mTz+KCTvRHcgwfN28DhYzmvZ/h/A7g5q8de/OW27QC2qixLEATvvWF+8LDxzb+x4qYR6KqPCMdjcstiOBjZCFRvfO+D87riILyLqbY3tHQ5Fqyx5nwspV7NB4qdHcVq9s68WcELYLn0+8N6tg3ZCCbjzmBhwenx4Ajs9pRXGfr+k0zX1ZVeA/sLcDM9vQ5Q5iJrsOoh/XQch9v24rxa6tJeaW6b7i0X4Ik6QygHtPJKQQSh2O9G269GdADjKVwRjpIQ/2pOdshxzCjv2n/KdU7F8YCcd10o48eNb1Hzy28ycHD9VK9mMR3WNcw3cK1AbFbFxWFhrONnjT0N9YunpOTqVIsAXO9JUb3wX9hD2MLGVUZlyydA0qE4H6Izs3ibv/tKHPzcerONBKME1UiYSoGkAzBCfi+EqC2OU4vVC/56011EVLCysdJ8s4ac25DQPekubwkYkhos0U0RNCq5JYP8sDdAaYgZuPkJprylDu299VgeMA/vL2IL4lY5gR8BG8/IPSOK7pTWFmUsZ7B3Bh13TMu0ob94cVZPeScMJj0q8NOPYnEsGYMIJhtWeZheKUkiiJGmq7TYXGI74/ZoBxCo984dH+oq3ztuLlLy9L/hgdio2l/hUb1tmTi/unG7MOVkY6r3/jc7HFKV9H2GBID7VNNo7nfZ44NKYZmXjNiIPhiJ2vvYUn4eJWN8733HQ4sgONG5g1AwsnN4igvr1bBxFrV2YMOo7p/zhq4bd/ra/dF4aoUxvLgQZhpqMdY49yzHaECbZpqju/2OKPhCg/ULFK0lmu7fVcJJy1npsdDDa9ivr92+8W7GvVg4AI5Z0tHQ84nR2myr2Zx+aJ0++8E7aCGdorh9VwePDLkD1jmWeh6Rqnu3+5NT6HvqBcLa0l2KsMw6mB2EONwN8z7S6z1NsFTXzCT38NC80j6W0AqyJ0hNKv7/0oI/dMrZiX7qqoWOhhM0YVATZfCioqOSxGE5IAJtOQt1eTY1yaForKPGYRuGlwNtto9Xa9vTtsJd1Zfp+91SZfIoyisSqMFIY9bACrsSlvtkgA7XItnSlJzdIV3Lnq3gCH069tbA17n51px1DoOubrsXc6lqusdBDqh1yEJRDsve4NqSONqSzJr0xocjr251gO34gU8LYp4wQx4skWrZ4KzOdjFO6Hmy6Y8vPUd32L08A/y2SPiFhvh/EIs85rS35lw3jrmTzrlQEB08vmHKUlgy9+3PG7+1LTj9OH0WmAkwBoeSF1IDhbCYlPOGqLOUAJALcUWpXY4t02jfE6UaeHeu+LaVvO+JDwAlR9kFb+q2zi5P36OhfxPyLy/nrwwdWu7lQLgPy+oZob1O9acAiUDnQthWUpcUAlSPp9ZQyIxXkm7sKIENVCTmB1ZPtAeVYjYGHb1RvmfygSIsrI/Bh4cOqsswVcS3VEirnDpzEMwpqM/TZ6asX+xvj9y1HUiAIyU5JQ5vt7uD1lkCtIxTRGw3IzW9TFiZWy4cUVG9D+elDPNPZyhK85RZu05ruXFkFgWQDmYm+JI2WI7fVbeJvrlG0+FVTgpIX0GfMYJ7+jbPVRu/RSnLZH3pFit6pe/aeXC9u+bNpEKaMWSJfhJ6fXuH1W9xxZiRdNdQ41BdKgvBzpaFA3whu8ar5s2fU9fgip/vfM3pGrvRZp0jML2yrS81hphkboPWM74Cz2AprVf7YTodWGB1a/3po9rXAr4mH7OBh7wf334ZHQWl/7wuSXgXsOIw1CwIKmJlru8TbpT9Fo4Se1qZeFr44Vplw9GAawZFNcrfOXe2OoEkqh3ooYOQndMaCs8j42xcjtvS4UFtIRr6/gQFXD96lzgaVVH6OJ8wEC7a7Me6nCYEwjLiLKr0FT8Mao8czdP4whjzlCOQkPgec3PtUJQqyyM/QLq8EdoIOTxZc97/YBMSrNqQSc+dSkMlYMH2jECz9KgdzyVUG8+7NLbXnXxf1nDVhDy/dY/BxBVnT9+CswCI4B1gACxrTt1nXcXhxag8X3WP9ArO2f8SWSm+HeHASLKmk9b19Qvw9O82mH8JvNOUYKilBUTyOIqhfxxp9c/39ZbxBoekKmTaKV1hjtifcykD1Ni/IDKQsyJvCtc0Nv6mG3E/t7XsVn6Fc91CwN7dVY5pwWCwUEeaNnxOPQO+IeZd9pDrMUlGt/pgrE9dBrVeASSXEU4Yt4zEmktDs9QlUZ+SZEOl91H25c8RKTsLjzcdMBC0JgdXP3btn00HnCoEGtqhJA5CyRfFXyNykrue+ApevozhJvyH/epZZCwKigTTs76HTtfOaFyGM8GGAq7QvCaX9oorlMq2uqeW0Ws2ZC5e/VlI3j97rp8YnrWkxyXWT3n7VnxFDSXeavRdekm58ccgrffnxXa2r7TvUF06KL84pS6sKsV0YSaoamXwn9l58JxeaNnk7LJV2zacRiplvvvilFVK45JsQ6sS0b9Vge5Wky8SwDxghhVQgasfYlWwus6XwAaEQcxUJgb9yTk1N0WcHqFO5B5v5sWdMTGdWlr+CacLaev74Bx2ctBjL9KICCFRZw1LCNl/9Oo3VJ6JNMnc1fpIDI3LGSVRPLCjDaKNAWaRrXOsnr9i3G5S2N39T8AY9HGu/NiKZGd/B1cZjjgleAsQeGInf8mQzd5U733TClx4mcb4u3nfWIgqF8f18TYcj3egf68VwdV0qzBvNTZh8f8Pm23TuUyCD1YJbsUGd5NvlTz4+f60H2LH9EAGSOCB9yQ2CG6oyURTJuVortDA+f2gmE3nUVJkIY/WbK1K3cEZsYyHURUHseDY/EPJtz/T6i3ccZb9dIHwoSkBU0AsCLurhP1sWwkjJe9scsItAAbV6FsOGrGxu648xbEusS/20sfdTJDHZa40hNLp1YO/Gruk5nudoO/OUuLEum6SCZxM1fX3gsvGrnc0BYDYh1RzNaFW+U4pijlFXYxYn5686f76O7NkeOyTQqZJ9AaFmLZFsFoC8KWT1pwR9YyfepQYhX0FjgiB9+6lOJ/Y1+XOcJV5UyCuYKjXvvP7qFoJZ8Nsj8cNghc42g5rfiHFPx68a3JFFNsFaKz9G0v3ovWDnyooWqHadrt8XHRXqKCGMZAnyH33tNJCJmZqSwiTk6jL4YAxC3l6iXATmM+9zLaZIX+jOhwHLXy7k9cSuoD8WIQu1k9sRn7iIxRZfHvTmvDeTXTi+94U5kExbXWBfO/DhVwfaEwMa1agyoYTAm79ACA7d0RvRQUuZ5xEm/Fen9NNOCD4P/TZCuLPe5h74RlhGxTHy3xnwUpcTlUQOFEOZmF5xRrvQOrmTo6235ECm9KWQVKsZ8u0KaMcfCg2xVABdSdcaTk8sBZoMLOqoXFbC7xSbX9iRWsNHwI03VBCSpUyXFW4Irqi3u/pacjUYf7l3p4qdqCq+kMIp9QbiOC8HCrQj3WfMI6UnPkzfsBJaoPq3ZHoQz2LhJhn90Q0FAwFHlYPNbhzp5UlXt4ZBHuJWwdpbKc7Q/H2DrTfMHAS3epmiyqyRPJXbdEf5UXsXfH6UCDSDREMqNxG0pZDCuEkeMicZZuXx8rL9lMau/+SVNo8vevUQo8L55PsxMAUzCD30Ho78aPq+KeqjHQI6NuzbcItHduKt2vNrT1MRJVld4sWnP9Ney8p5r5/+YbNE/SyLkv9uYtYzI/k0fsIY4ijiUwUl3WZgtgNEFkUugg2RO5kAGzZQ8UB6M6Fq0qzKZCksCfpB3+UdpbaoW2euPwkAFPfw4FW9np/6NAfrNRtyF/iOENMZO2vrjpwEgAOa3J5TnO4UHwuu6s99fQQi3T32hUdnzRryuXfTl+cjP4No1QGbEdnsgXvoP/MxpJCtItzWQBUYZ9abFBRbNj7x0Ji2J/uu1Lj3k46sOt9ZSdrWiOem7Y0gLPMO/rFQ3H3AOjnbtVDt+ZeMIdAuD/Zfv/OL7Ya+VC0I3AnEOuHh0bU/r93G1DkcAbaG+ZOjQN1cDAdYGSIjzFsvT3a2ABzjliMdrIs534pKY261CCB/wOTQg/i37qBGyaKDVk7DQ7GmTFoCEhipZXhG6Hk0BaW9HP871QQL6orEbOTAanJFxuubIWcjNrhR18KypDp4cn8yD09z+PDs6+Cnns1BUsyESn+ZKkXD1hKpwSdMzegqVU21QXV6wPAc3EcNUOfbeBdxV/RMC4n+R6EFPUA1XqXUoE9hSrCZ+0MgD8fsGve+DHi7mxUR3pfvp7l7dSuC4oje3NUQs7Cl91SEONbhPabvFKZz3HWUXxi6xHHUxx9hnFJtnUAXapcYHJ/K24uGA0TYdyEQiCRAyhaM+T14eLf2/no2u6FKYAlNvRxZl11nOHziWXYu1IvnCgbCl/BLkQvPiyTRWjSU+go5iDrxB713551GDJIj2/etb13c/tqs8RenxprGMsKm1E7j6kixzVxk3t+zY/mGL/k7+zv5eGq+c7WC5k17uRcRxN8vdkI7wJu+t7nKSHfcVivtzpGbJlqsPbs7R80PKkp6H7cFtW/8uLdjduwg3ZDp58MP7yc7uIea3Yjkw/dMC+ISpXHM/gC2AIEMRnt3sUvmE0rcpRbhvFfwHIjtyeR0IvQRARVYGBgxY8iDHd/EJ/StPDwODB4/aA3YhB7zH/Ocbp1p/dxrnbuLPh5lclt6XmHWs3tHor6u7NuYs3ltfeEDY480tbi6rjPVkJPDiueYr51Bm85C2HElX0cZyQlHVqJzToZj8uRlMqdmV5Xot6H5AGyjKdd+6pAaJoMZB8DDd9BYcOqRtoKqwNxvn3kXwT7SG0sMnf8+36z4x9CMW7vdh8dhakx+mM7R+rZV95D9JQfiUGR3vwrR1NX5Nfs2HQ/8OraP0dexZ17x4pdAgEZLQjQVvx41sWTqwNMEcDSsHqDA3Jg662D+1IvUvTxMp3gtN0vrD+kvRVZnM2CJpRnguhLARFAV7Othar+3XfBSgvNqozR+RZhaXuCjGSlqhehTX/q6fimqnlLD1FkMp0L7uz6l8vLiKSUAVrZP20QX/nAmQwAyiKEKXafCJC5sSC06dPhzbNv7aH6uJOwfBliBnOAvxDWOj747n6kgBCk1GCk7e0EIDxFmMNmJGFZPaVmEZH3+peQKVgdB5eamrb6zOF2fpLIitUx6QRuaK3/iTWUzOn4jsEu2/h2iZ5rpFCOZr0sDm6QKTxCd9/N8lFiUMHmFjAZmSsmrO/dvKYimkdB03BlpsS/0cM+O5W+iKvjfH0t/tyQv1GdX+ok40IaMJ3OHrGVz4XpM/7oEdZyrMt13GAw2/2LnpxRvcNiS6SeyDcQogI1gA1v+BBZlbcUtWCAO/z52e6KtPqjiHdM//aEhvRVwzLQiuOQMMN/anFg502zYwKazuYrjIS9mNKe6LeeWAYyLy8q3qnCyChP3L0im/2J9GwexODfB9MZjONCm6sjpjsAxQE6yHb+W129Vg9GeKSep2oxeqatrhJq+UzfcyPFq3lcxwDL2QLUJmljr69Gkax743IcVGDvRnn/PX0g6PqgeNMYivHZFQnJ5yfPyCNSH3LG+0CmQwOD8O2S+Ups+VfWoUtTc5p8/Rh26CmCYwVwZmv0umy08oPpYgI7UQEjAToQV0QKAWpIq4JNzBgSoJGjzLaMwLo4qKLvCMSLaV/TeJ6/emJI6CZz6D6BzWh+H+h+rpfudB7B+bqYLhtMeXaIG2WSkqgBoVWHiJ4Sh66b6z3kNA8XR7YxPdFHRNsGEns1fn+DmlsOePD7iOHs9V9D5GYNW72EMFNN+dVETpbv5t0yAIExvYgbRpAAUAiUvBxFrCKALwGKjrMQXXL4ynEm6MRfggxrdHTZSlzC/o74vbNnrIfm0Uh3Rh3wIfspZEyoNpAvEUWIltJBBXvg3NS8Z/yeSF7DmjYeW5pJCupXW5XxMSd8PQk0X4gvUMutmLO7Z5Jvfscl/wHcCg9RpVnBi+s00kEWa0groGT0KIHF+qOCVgHwtdOCl3W+V0NDnQWr0R2FD19iyynJ0ACbMhjYGcU1DKTUpHNCDSapz8YUAChm+S/YVxFxQuDaKmfBILeaRcbpjU6SWJzNtf4+r6GaBzJRCioxmc7qMSu07GbQ9J/uekeDa5Iu8mLVD/Fb5cuFQHY83J9GnXcW5LxCOFsBaOBs7WKIAiywvQvCcXwsWd3QlC3sAas0k2tOo/uP5OaSZyTexqfQ9BNdxYClLIl/r+fzto1EOSVyVH2a0ryL7ZwvDIXjLJxO74eKL+9HsgmvKLqWqqB/+0DhhAiUoc6JWXK3HFDFIQuCeenJc3r5W9wqiaP704q8wk7cEdx4jirmHZs9fi2LvZWjSAqzY9RxpC/Ozt0Ydl6wnCeJppYARvAEpXBHAOJcH0oQQD3Bp9+iGD91hu/lU4IXn2eCtRCpwf64PeGzsDXjmm8JD5UCB2vcaUdZIbmZ1xrJmPwvcu0NdbG+fEC4ZWuPUUv7WqytEugrDOE54QFilaRgIZextgCIZP3+54DAXv+h/8YsNpO7D5u9/uriEpM3wFYGk786sMxAcf7+6qV9Dzra++JDXHSjlEDx37QiBawYjEvWangcHmA3ffz6e3NVU8qG1zDSd/aF5no6kK5F+TOv6egz2HVWPm8vSZdh8lhHs9Cgz/L6GrJQ4Y/XXe7jJnLOjNP3tQoodKWy2BapAuPMqhDGqfkq++VP97AWfYL68z0v0hvGVumMsZc2QQpwO4v0lhaujlYVFdycdPkNkVF2UPGcBYcI9MDr84OMv2/G8t1Z7ZU+zNfoaGqq4pOtX8VQfGYdDPJ0EcdXPGICMxKNojT/jZkwUid87ZO4d+P0diN+q6Do9bveqDMYTpDEFuqQvNPEqUPqQ9zHQnGADlL4BCCP9a03KbNcxFWAhNC0sz2rGb3QzlhSUsGbGlZeF8ZpvqcL3lYvCk+KEPp8c5LJhhwlruPxMCVzZSqZb3w/BX2aj8W+zqMvhN99zS7Jr6Jwzvg4pzSKumGQUGnlgKn7SprBhj3NqyqnPdpdeaTiFamrdNraW8uv0VZNXD6fU2NulD+omP110Ev3YAJodkIRo2vTcG6sgkZXN5p9XUYQLPoe7ETT/etYn/avMsj0ZKE1d2bE5VUbdRamgK0K11iFdb4/j9LlPcD0UKvZzbJevSeH6qrHEwW+HsFnbocU6wxATNLSSCWrVGI/KpXoPHlvTgWFSk1j/hnU2YigaWDum+9+3WnXMf04y16Dup4+MjsmXpFMfu+eHybXJdnoSk7G/EJRCvl0A5bpFE0IOKPstXRJWcRIbuNleGOjGsDyo63Zm8FQrf6tU8+6useul8liR8Mo6hffcw+/Ts+KFO0PNpjqS3I8s6iqNDZ0cC1jZiWdNznckanMz761zYcasuOqNZ1SOuw85eGe33CyR0WgJ7GEuycJxADrWKWIeewdFj1rZi6tcCqcHGreCCBbHOL9T404a3C3F15XX8khi3/UtVRarZnNmET/AMp48tJ/QpVE1Psy4KWoYxltVRS3SeVNBtrMBZpre1VTzjKz2nUayNeJ7SYqHMW6/u0tJEDl5BfPCf/Z642BpCOML1SYvyllJ3oeKsnMNkNRJLjIna1SSQxSdahUuIgtMmWgHQqJuh72mXVP6oZt2Q9mhsxChWpw8MfH0vkOfdq7TjKQwdmXEiiCyYmiBynwFlX3zqUy2do2XfS9rvoFfOk/lnfWPkbKltxwoJN4A3rcYwDdjDHi3Dq+sjoD112sqBsKgIrGGTKI7vIvsAAZx9ALJSfz3otHmJoAgckwai0m9vKauBbZA/lLKj6DQJLoQH6Yq2fWIICoH61FdA1D9hp6xxDEqo6qrqUlU8Tq21G38mz1sdZeBNrCO9HGm0VrhMgy0Go4ESk57DWuEWPdk3v+6Tk+2Cp2+5Kf/z4wnZpa110Aby1z4Ql4d/BmpGDWNaHuD0Gh/nWp3s5DzLRMzpMvgkg9+TniJ4elsZXETjzTjNeFOHTpVWWEudmK5BSrHkqnkaeMdOlD34rc92sAukhB0n+wqWO8PeqyrMecqYE7Z2Q84T8WgcPLtTmieFcpY+BQo9IfKpc5LQKEbH2/d4wDThLBTnqbyF9zlylfKVKp7p7NnFdOkgo2nV+3pmeGBZPA91JZ5YI0Kva/7lG7c5hK0/w+u6cXWramWp8+/FdT7D/Cvw1i2frVn/j6+ipcHikgm8HW60Xzqxj4rD91yOEvCP2d0GzWu42t7XQYCicAwiP18aof5+XH9Q6Le4prRfTdzQyYPEJfu7Ph2YGHFnLyB90P7OX2ao7H3Qm5/4DvgBZVq1q2wcUQhDka+9adaTNqhHdjpkRh2hRHiuNVAB+MB6VMBhozuiDIm2eayGRpzvKffOjldkrqvaB2gz8whMs/mORgF1XdE1at7s3hqtiRYI5E0tLDfz2r1f574OaB0M/hYwV2muu2sRDOqcJ+RG+75aqkINOzmAmIy60R9MsW7KEuzyXeWG46MGu8Lz2XffsgzvHIKuCEy5Fiz3eQZcNoL8XSqaFk2B8d/VnBR6Aqjr+a9C6C0T9DI85I7quu9Nx92u12SlsAbJw2HxFEW7GvJ0tcuzgEd/JDmaHHX0RLJQdw9s3TSyHo7giyXlFGVW0DYhPQbTDJ4r80rVNXU9h9f+k0bEhsDtQm6i+KNbyW53lpo2s3BdiuqTm1geLCXdxlBgKIw+MD+UswQebuHWQXUvd5/HwsztkE9EMsai3vK5vZ8RADo43FhrPH3WdojZ3Gsf/bzpheOjA6h489p/escI/C1n7jninviQajo2dgCtRr5Fyi1FseEPBWsIqBFw7R+zH6EOAoc+zGD/3PQ26gBNZqjIJqQJ+2EOBMwYXwdt5HC0fR8nP3h/6Phq+Oa8L6/R5d0KcgQkVBKpGPAQEqUkEZCREIQEBg1GOBQUJAQFJTaaCSlOxSkYQOkOzcaYdSoZ/t8f8/fe213995z3nHuuVeWX0wYKyaC1RsgB3W/kPzbbInmrESa5wwXNljj/9E7C/0NxB/CQqmLhgZ6gRrGdPv/gGRmnIePiOJNZZbM3Qd6nR1HSsxS6LfGxDQRcNd9///CaUkHLTRJwGnSWht/OBPO2Mwg99D3Bnh9R1OvNzH1WM0cPvdCHMoymrx/jlsRBHsWYA2i71ENNfyphxy7YwT6TycvJsEpks5JZ5THBQBineF8fWTvktSJ80D6LkFR2K7z/V95JGx0ZrsQO3ILy+RLnO5bJBmntfeYtaKvu0o6Ov6J3j38O3KCEkpMEcE6DhBbxrwsKwqy5MhD8zIreGVM6LNYkw1yELPeWr/TUgmujondqzbGfdzD5q5bv0svUJVhV+y5AFZ0TsrdkFR1jjBjAjegRnS63K6FeU7XXBLYiAQcmfOfNyHnmfAarYEq+tqQuLvc1I4ZvUihaLZm8JJYztwe8G75RtH8Ls5b4LhX5YUETsCUDIvzNWbdmJk53LR7N4r22x2yocZjyycDPEnyaRvScwyOPyDH6wqQqMTjcMIsKe7nU2wda5iPcDDr/Kff1NBv2VXrIArutqpPqPFRN8hWgRhQyhGY07uUBhrOhsNXADP5/rE3h3tnqPe5Ug2vVScSRkvzXlv7GVHL+JjnIQFw6cDzBEfZ1Br2jzSDNQftSAEaIGuftilbYCCeqWxPP6RSQOTR+2izqA0Ta+J3yqVsH0xSevFKAz5jInZLM6Vi08XJYavF4Kqq2wp31jngpfewL4BQTQkrq8lIrqKz4ajvZK/6JD/yYz1D6tLx9NjdBi/QBgGK99B80sqwdxNJ9HAGUaIIb0bzw3ecLhVqLMgAwmB/YsWIb4MYwCza7LgecTUKEO3MfvPhU3TXcKHlj6doem9xAgy8qkWm+Sey43aqHrLiTCsph8eWWZw/nBHUfrIiZGuhwX476W/McMQ1DnYIB868tjX8mPO+bRNdewGyS5GCktnuhVorPV0HSdgRPXzH5z8h9rmjCGnAUDUTpUHFjhP23qzuGrLs4hzq7PSqctK/J1OBTPb15PBhBduxseE0c/nAdmbphNXFD29MhmPhiflCjw+b6pqki7Vk6p0f5DLosyao3BNJzIBdOJoMvf2ObCwhDCwjXoSxuMUAQNI1pAZidUj1GhCaIHUMI1j5szXnqA8HTtSaPPvn6FR110jSMt16R+drK5lntAQoHLAAM/6C25r3J8ylcyQf53QWqvCBETIfxGetM5gwK2+7rsQjihrdH8d5+Evn4jb1LqgYXFhw+baBn22Dz3ybusK+ExvYHMSwnacYvdf3sN9CGQCG8B0/oCKpESGE0cyM+XHEBn7Ue6S2ARqlUv6QGu/KgSvMqPprgh4l9eIDO3MkC1Lt8hYieSufC9tUVwvyDfasVaJYfHpnZfOU2Vr8EXPq6O+/h5cEwaGeux5NKDVlWsU1BBnA6hlhT3Pi1I/HVRN2tAmj8X+8hc0Of1wNpjlnIkxXqiNdBKtMBdtuqopHRsPQjGXEArmvZkWULVeTnaOn6zVafLlv+/qGj9OdDoUf32X4i0enExuEjAioDycJp3xqrysJOi3DvEMSD18VT7Zb/9mSrXgHNHKuITnJrXa8PITWidNdOBIbyU3j1AHvRorfLyRQPLXikg0YcYugNYaYcNi95V1ejWcGwhzwFo+551a2s3oEjtvfiRwAcx6gAxkU+wIly1aALDhHmQtsTmfxO3leJcYd9iweaodDPw4csAcknOsZFUaRjkG2ng1FVmEONKqO5xGLzZQmFLA8uhc2YIl4jXHOybBTDACQjeTmjBKRMxTt+Qpn0D3+XkDEEJ3glwHxkuD910ykV0WcvEpAzl9Y6oYCpASPxiaG/hUHLmqnxhQHrTe8idKws52O07eUJOxB1zJKlceMbOqHj9DGXHYjE0RgXRRzrU+FDt9SppKvcXVKuysHeX5Ii7emc4IWw/9vLQy3n12pHSjjSJ90xrDpgFFhxAoLQWV1NMJLuSBKurxk4Lg5Wbdp/R85rFwV2G9IZFnxk0xH9h5BeMadIuzsQ3abrchBuG3KY4IXyjc2dxLqOK07aUyOHA3w2x6r/gEvXTjFXKPD76AY1NFgeR/098LrtX2jLF20irbmgDBBbGFU6cum/jB8SAsb7hokXHLlv5JHU/Jr3RZ69QUvkk8McjbVSTXuhcjlTe2hhtNwDbjt5FP0QCH2EZq71wJNhX5FEG5SmEEGt0uF3dBBeOmd9NpnZxg9FF3ApQIdXtsumBRM9QhdZN2tICXfSQAnvF+Cbcw4O+D59bWMdUOwOayRYIYfzkpkEVh5yQgtpLt1B8TN2SpMg/cfR1NYg+3SdDfXcmnAdrajiVz08JYcUV1kzTNWU8icRHMTVUmKTLy+XhjfDsFUqRf/3qkZej3eYpOYVlkg9QiNCD0wnTpcJ5HsuFiWUGU3hTTNB88HDnzeB01H3Lu7X86Gu3cX4yu7t20aYEMCEDSFVG4oGN8xgmdEe9x/+H8LUf50kNiIHvfnj4TiTPCh1ZSftwJPawAbwQV/MPuLY4YDWbyzkZGF2OgYuIoPwN1WRnYH9cfHs4nFLHyyRSNoYya3Uu0jFGULWl83vxIgJ+SYNcjZYpgx+EBgzocJ50oFLotAkgGWrIejbxK2/y+xPaVjGa4yCkbnq6OzFTpg9On+T++mGyLAbmvSdPhFdkj7ff8nhFTA3xXR6rqoP/nDG8J9ROr1CP01RwQcuj4rlxpRW0nUAYb+dv7WQnVsuBfE7mmgpaGd3MNHAd8pOu13qB/OyiUA24Ihd/SzaoxEasAzVJwtLqbocXRNot56XQNzlatWKxJ5XHNzycO6Jx2TWZlTVqCbOWL+54rp2LHIPELmqskhP/ZvpgPV2wRcFV/4+vta2+xx/xahiLoiWqImthxWPd0dD9g9NUe73SRvpiSeHvmAUT7Y8bu6vB8JCzzrSSwALPEpiHN5CRJGJ+y4adE63LhXHa4yoo9utKTFVxTO0RiBEQkIzrFLjChWS5dXGfKBCXd8tMNxgPqadmCLVe5Kp7hYqL3qDEIh4CpGtCc3uZtuYYl9P8QQc8E8IB1Q2vsyHU8FjvwvuT/IGTP9tNs23v5uGUZnB6lbjGLHpT/Jhfxe+lzlrWXHhxUpDLpBDvrhSNGcY4nmhsNbqiqE0lsetIhg/+sci+GnU5RgyTdMGPQe3JLfKyfmuXKHja5i+D1FclAsBQ87BBCWjsSQp2EypWBD9BFEWbLx4fiBLm3AR/rgszvWJ1nth8niudH6YvkxelpDrpZgTkJKtUM+nL1IpMUPR71UrPcysUZEBl2dd/3k+kNsF1Qn7GwltrXhgge/gG7hoOu4QcFjCrHzszZNXbuDlZF8najtwk7sLVjQuYf18xmKJp1wok/YcTCKWzgFxxdQ4yFUYAQDOA44blMnLIzNhfTuDw3AbUf0tt57yFxZlyGl9HqD0J0Rn72CGOp6m5Et4lu0DbEJRL6eC218FS3jQIDTTClRbEHW2VO0mwAhg1kcwGXeCh0g3jIRQNtDtI8MuNaBreFX/H9y95+toB6JROVbT8Qn4hofKdFhE0b6Om7u+/poFNX5UIDuYHUjSxY8BImNjeV0ER3bCgHOKKovoJAZZpqGBIgpsbnAFP01zaFcft7P+msaqho827XJjrtHmGObFvqAbLCovhJJUGLXs3acjSKR/LbsOHUqsMQ7pHbcLkI1jliwyy/rz3PgyBnqnYpHlrmUc0Kf9vHtCMJb/AZvNbzQ07TOCJ/eaTGmPvosHftoeP5kAQZ172p88qx4PbpjveCe4lx4SxES5QsWFcGe2pugtRd8KQBYCAFTWwWx+pt0T/5D6o3/kHpwouSIBhyXhPRMFemAHmyUQ6xnmaxAlZ6Gwxoi9c9M0Zu5yHE9cJnEpn6REz1TFm8cBuk1GvVBOlYU2wRV0mto+ZPCNVfap9DuM/QP+JBi1oEdd37/HvEpMYJciPMm3jOV7CfiEYGzgWy4HgZvcXIgZwt2r/nAaWTVOWnEctPnlUP7B0GwahN8zju6mkmX75EGPGQxL6su6BLVdMRSvYtWecFJBxweZMcdH2+/kryakaeyocFnXgW/P85UxSCDquG2qzXw2HE2wPOhsRha+V20FAmcOKLGMLOnU1UfLf7LLbI3i9HK469TNeZBRQk1QKm3+rYpYDenQ0Ya6JOyvMxtKDvhJ29nI1E31TDu3XGNmNBF9mStc/V/RzvppKVZ0z31LJB+zePZezu2pUjz+hLksgwFYMJkyAisfYsobWMpYFHhaUWjKnxYo6WNSjeX6Y/G618cLav8jsIEwYzb7zP+KlPZFCEl7jH8grcQIpmo+sYc8jtsDpucyzKYW9XeHKYVYaePQ++sZT2j9zI/QPOttzDjPqaEoSozpbvR1+kUieL25keiCOPDUt8BQRNib2mLYvFJ3OyynzrfS0Ctf0raUeMb6sno4XNNnA3pSImSLY38MiBv6OhB9u1QrwX7bc/tKb6HNmJM+Xr1tprm8NjMHcIYTwkyndilAbhF+NnZfCK0vfhOIr6a5omA09mxOfqO4OKRqBvXrXqaNSlmrdCc5chkSH7EfgZkePixnTkh0og2YCrwjScduNZKOLbWWoN9lhOu8pB171R2b4c90eGvYOONOWK1HpCvgGWtegVyKrDfsfjDkwl4COIiTuMO1liauUyW5AA9HaanL5b1pO9B6j1sU1SQgyOjMdjuDkWzfhFS7ovAyFT9K8jqmOu8GeowmoROMbouxc3DFEyYCWwIxo91JFhyPRYRsL/VLQYfNAnAg/OjyJt4yOvKCDUCOX3QltI065ZkBCXBQ6wk02fkH9FCecujGsWxYhwfRMbIQcIEoI7ug5KHlqraeEMtrU1QQXeOP2xohmHSRWjkzFAxGnNfkVIBEoLBXaY0J6TcJo2RxGoIcLqehpBnzOQJQJCudryZc5WegvN9RtAjayj04/WllpC5W1ZGI6lJpoJyNNARIFZgQKRu0wdtOfjdcfRu1eo3XchhvRTowloOATNLlb5Ufp2O+ZZqiiopxP43VPUMePBrW9cjtI17ecT/tUuYoZlzBv47qFik9/GXYoQ9IAf1suNyb0C24CYE4RmdZPqOHPYq8Jhj9ADqHtBYSMxiu6dD0fp2oNhSxcaxStRBizbw9YiB80AhxukAfTrPBJk3Qc9S40UZzdFFxMJHql9pWy4yGx6r9jdbYp162BWM2LqFcS2DUEO/1J1/emAEVvWwT2HCdUYhCYwtJ8ogtNIk/I5rydZuSkOUrdbei9KmPLe3ElVJAAxZdkhpVup2eGl2RLsGGjbklb58C/toWMQBzRFHnQ3PiBtnBSwYgiXeIvnjISZDn09iWN40Zu4om/OI1Gt/FIETz0TiHMFlWzdYcLQCWN280QNBsAQNDX5p+KWivZGijVeeHAUoZdSnqDMjN3U1TWCmjlexkiCgn4g0a6BZW0YUrWkbEnNQHzOJJuq/blK4h3mAEfvRJZaUnwj9SwOPaepSIwlUk4VENFiboQeIeudPJB0+awkt6+arzAkSxnaJXtdKRliuN27UpyN9fAnD0BQv7dCBnf/ZuoSznPyQdIk8yA2WqCDYEuqmPAAgukZ8RPMw7Ts1WPuF2IbFKA94i2J2QJmwgn8j6pKHBUuRBzchAliwgnNAwNlSQrv5G044kO1A8S42+lEQuiFQQ/kutrwgY5MdYqqJiaq/QaAx5FkhUYF/lWSDCCwQ2IwCTAWYqPIVnXOsEJMKXw1OIYfHIokHT8qiWOObK9bUyuIhQ4sVA7kvGBTp8BVIpJwpqi/BihaqW5km8eUvu4AMDT5F4Qfk3w8BHCiuZKVlbeLQXua5Md0+vyDWNVNepj/dnm/8akDtv1U09dPfjogTecsLDPers1qyAHdt0gB+vtoU1COQKNc9LPVDkCABerWtnSHIVT9Xv4TYZnS2EXjeWis1yXG4/IDAoRI0vacsCk2zFmA5Wrz6XawyI2y0mAQyF6Hc4OpW7ZwxnY1SvuG37NslEQJkB9cS2IU8nfNr+5lk5v96Ic07DdEYgtJu5ioTArRlpXMLUzRbn6FR1HTEm3ZEK8o/x4m7K75yMyhT2/1DkEJ6wwvpEgRCS8QVbxhemJH87Zrn+Eow2L4APjjvKbwLLnI+ypYa+8TaihJBic3AUJvcyQ+L+ZwXZYuQ3EZFTYTwaVi2uqFFAeIw8rb1DK9jtDUAhMUgDegnykRMxClArMQM4cPqBFM3jCjjhgqytDNEak1oy21VJWLMBrF60X0BO/U10CBdPQW7tq7f8ciD1tMWZdEQxyeeU1WQOzZQq8/OhRgeRT/qoiHXgWBfJTCmt+5/xbDjd5yQWnacRc4UeJC9gIDQxVP1r+9iNUkwf0IJI1rrNJhrEkDgoRKZtQnalB1GS3zpq6U6paYYobNpgXY7M2pmg5jK2P2tOg4cR36Rq7xPHYoo2u67l/hq9NMc5Gn7ffxg592MANtp8fr4WEW88HiM6fbW9xJX3BYwvMUwTSVnthjOADbAxrp9pVNA8O9yEsiUhduQEHN1zDgWTv7bUkMXmku6w83CRBKcgqtYuTW5PXax6uFpn+FHmTqPDwcKrY1IHkSio5BICfFN8KGA7lThNviGBC2NQvRpsAqHL/vvQfajzv07VkY8bLipDMgLm3vp/sEe/YiRvt1mTVDQ4bWizIadNe7b4lhrzfHVGWEsvgXLhCOsTD6oE0MIBjdCsrrtQUkBr8lt5h8N6A8bgbSXng43C24wQ/WpXyj0zz6h4DlAZ5uA52v4ELE28p+Sxo9yoXexha4tPwvqX5QWYh4Ncvc2DO0XAqsKBb+P9WN1Ceo5ZBBfLhmqXztzyuo6n9m82fnKyoivudpNu4MiXbJ0wSOiMKtrPw2GD7XjpbwMfbhFqjiei0TFeFHwEJmnxB2zf8dUVjhQm4koKz+G32tg8ao0VT0M1JtgBP0OlhPGYjxFkfT0N7LgBBNs/rd6Ff6mAj5YMShSL6JgZzYUYzaGQ45W91T5ORko2v8CKAZdfPumgsDMB38dltKKGL2fHrgzSbwYYi8H8QAyRtcSIubFXUykSlAUAxAaz7BzJcYzcebz61d4aJ4G4jxG5RSqdFl2M5CieZCivBjZyAwxIfxNP3gpsevvAL2tyQIebr5D3EUrLysTcjhQoHTiKXhadmWoJ+a7OsEwJzgeWtM0sPmYykhsa+n1JcK9Mx6KFCa4+D7xt1LKFipJHY2W/UufVTnu+GerfusKT9ewP7VrhBFPt5HTCY9kyOScg5aYxqRNd70005RLjQZGf51JXTlfsHt1tcP96qrUzeWKyhzdso1xSdM78wuOZAgOzmc6CY8Exi+1sF5FzpijLdu4RT/4UvAQ3dg7ZOOPDA30f2cPukxgzykRHs7fOmVLtvqcr0WRI2axmaZSZ8Ya9eLYzEdQmJdLX7WA42yBpPBan0iii6PhoLmZ0FDK954qDycDK142XEz0CxGsQfM5Kb0BL7OZgwmosuYHFEgPNh/1kjPFWfRryPWetqRzjrQco2grBLq/U9boWLbGH4WewBT3htwhz+clwlWDyAjrLfUr0wDIvnCV9AMZFMigSM4DeHNnO216Q4Gc521BkDlB0+lEP/a7u57oxfcJjkSYqKWax+VWV1INJ0RlPNGY+a4pYOM42sQtVnTNdMB89B3TqM9dbFf/+pNUrmHsjMMLYp1rdL7+nGVj4kf2plaBwSNeYn3dxZcM4/eBeJvou9lADDskhMHdSFP1pIcfTnYWwvxlk5d2ca7W4ZlhW+1wy7Hsszda1Hwbv87cVZW6A/n8grXbvvr/KnVbb+vyJ6d5dNblr7vDFhqnEIC1f2ugWMJPuoNBdj1FY5So8cFED0NA3JVbGPyS1yR2/zaxaM6iCrfF3sK+Z8Jh3wzdHVkvPqyvCgnhkjE7ZDnoDzw80qzwHvQuLVwrcrtTPfvqiSF6/BU8BF+xCAajYlM3Ao9OvF78OXahVYw+pYo8Gjo7O0IPhgf9GecNqUD4waBqH5Sy74BSpkt4lHGGhrFX2lE+8XEht3O+O1pRN8T7JO2NCORXLzSIFFEIFac+NBbKHW4jmaUgw/vnh8AaafB57wxrBxBSSfrzJk/yEYpyJ7UhXAmQt0e+e5ICFcV6/3Uukauoam17usf/ke1P/pvVTA6QL14gUGwgE4Q8i6CQdc5poD/omXDCXuvrApDBf4nrExQaLq9MPfmw0XA4kGsMmOLZ8tRscPzvg9lUC6XsSCbcMuY4W8rcsaMY2rLa5FOg0cVQyo3w0J3FHiHm2QcMeG3a4xr9EXPS90QSewvvuWx7daHH6Aazi0Le0M/6HafjlhtDHhHv8k5Mw47O66Xv+xpef3F5i2ciyKDyC/fE1aJpleeZrKWAqnW/rwJC8RVTDNekkvCq7hPck/V7Ocq5BuZgxFxmdsLhZ36o8VhBi7TnkbykqO21GE745cha1684MbAm6BMt1PQaBexth/6wG/F6cPRGoF/bxbkPteKSkpGnmyWBRz+z4V4xwFXo4UAegi29t5aJqJNPTxrP+fBnYcMSTQAsa5Ddn4MBN6teBXP0+F9KCpvX5bLxNaUxA+cHrZfLzI/WU707Rg8saKBV4gCxlab3yHn9M3/bR2d+abwpnuKrwbuN+bRz+PEIQdmbcpbxSqWq9Lqb4Au8n/vtOxibZ931sSy+paWVOah0GUXp0ItwESvlJI6sluNQlpKDFF4tCtjDa1Nzn5+2cL82JFWl3xYg2vkD0sED1Fcko3oy57/KgtqvPzWGP+u8hLPtsXCfHNHU3dJyBuIF8tlH8hwtX0jgNAV0wbq79zjeu9mWXOxtBGKDQB0cbkJi+rklkha3dgYYa40Him9A/g5p13u8SWgQGkpvxSNcUPP/rqnDj2cenh3PXOcaHqRr/rex9UKyTuo9svLbLtSNtfl8iwbOiVDJ0FfNDUuSi83O1Ei8q1DP6rs59rbBj2a4msx3fTijAeJhkK7EE1tnEL8zq0RjMUyF02NJaFnvIHV3PDnQ8Bn/A/epldODMgETEGrwnRo4UARsJ1yeiLMi5uGLgMYW+Nk11r/uk8RAnfMj+rbbfFgKBrgtABzHYO5ektWHEs4fKOoa2fhOVtBSpSQmvj2lfGxdlFHmKMnpPWdjMnrqJoB9ZhbnetAVsmzgkaufrlTv6RJLazhXRcp3FMKM02l7WhqtwKvk68rJ5q2pp4s5+5kjJODL9kYmXQB0B+tMQESBafbM0cVnZiO7ul9ARGfi8Hn96WDyBJIcSEDq+6wQmeGhH/DYxW3qh80xRLVyU9fbhhYqLv5hqDDLHD3ZpZ9XfTAM955rfrXqV+7aaB+g1Kdgjjo965+ybO6g3XEuvTm5NnogudwZMdqN2xpNJL4o5F5O6qT+COpcmtLXq0DXABdoNu7yi3gEpeaAlOZU5hyk4QQV5DS68QqZgf+sbeZ9SyY6YyI3pbzuYT1EsLbsEIF1/iEzUsBjLZrytHEdpxTkHZ5RH4J/IyPKRyac/CrBwmNnWPOi3i8lfTlGUs4dEPyDV0BQAZSwamOBi/K2d3ZWIkymml48TFVxsl0psTnzszdFHeQbVBYTeCndCF7aFyh0F8MH9hzPihqsKs7yz640kKhKhmQXR2fuYagcLxRJzMeWNcfaCzII1s75f0UwpAzctpSmgT0Xu3Gb6XDiI4HdXj2hlX4twMPZgfW67CRVtB9641qswwFvKVbnxO1QgpPZcddpFD0tOyt49Nt/FyGmTVF82EHs0zmjR/X4BoeuJPZDQfAuB9fGXL4/58Z8MgUMenC5setZ/hlXIjgcUjoTdAFHz/je3bRlP1pQSOX3KswggL1zXfzBexd+EoCge1oLT2k6Mjm7KFrtr4PIFkEfzNR9D//vAXfMCM1hu4umr4TVUyALDj2HETP3MGeHJPk4bfe/VAz0MkQnM3pWduGJ76WI2zTWeRgGMNdHrMbUjPpQNwSBnW/sohexgpJyGrqKEuJdCYPwjOF8OjFbea1pT5vMlxePnwzWcj2cfTwRKHwuW/5Ama4xucaVLqNsUXzFmiZYlMIGxKGki3grywJ4Pjz43wWMCO9AVfK3BV0Wf/lPLJgQNND3FK7fgkKt2bLb36fmDXVGMFdl5cV9Cy09Uh2ngFWLYwmCKygTUeVimEqjaI4yL33GH1Hc6K7TubqGNpZoRSfRm6tndczQ2qBNBdIp0tdn+4SxrmW+2QWIHzQNPIL74mtlkRF/6F7NwxyKKWZf7dQn4Cy236qIdD/l/uuQ9p74z/iwpoR8pCBWieaY/Qg2U/a7uAjxuHloeck4b0RXb4SgxNnCkZFmbp4sONcn6CKN9nm5v/TIgb4pLTRv0M5dLskHs75kw5kOVA1rnZuvrsbt1NBxTEoKcqyQCM5kY7iKy3P/RFr8K0Edy9DdT/ffwYoCq5t1pySuDdhfnYgr1l3VQrDRnNmzXgN0dc9ueXgQMP8zAfOdwQT5x7Ft/VmWpfuazPt8ahsb8qwdHntC/HsQPKoK9rGgeNTQYgKS4IaVEy8RzZWAuKUN/Ak9VyRHFNujTJ23SUsefDRvyZNJwbfvyJugG4L0tt3mofNT0y1fa9WjGznvstUuPY2iiMReDH5XkAuSKtaS6zlVRV19H3Dy9/PzO9o5X0sL0rf+K0aJZMwFYrWUZOCQZjXrx+bcyLhNc139G1ZSqNp/L7Sigv8dmoNcS8bqLI3rdzs+w69XXUdLwj1IcDcYqyoTl1QmP4465BlxnbdPvhkTPptclvpV1ufjHAKwuLpr8NxmAkrWaHyn9BYUOc5/AtzooF1Q2rve41S5/clntmfwVjM/mWK0/ewZMp0kffXRVxmAdqT8fTIoEP++h2elqi7iQaaz443ZP+SQUSqbATntW+ZvgNm3sZ9XVyZaarupst26I5cPajjx/+icHZNL7T0Yb1qswvY1RmajMoIUXRydzwxsVSSOEcprw5GDadLATXfOa0x16RqKbYGv9HA3g40D7bKjgmaVPPwA2J0w/Es9rqZR4O8gJ73artXv2ai+Sm07ZP1W2Q0Vf7xbuwI5xD+6g50NKQLwp1wHXUdPvq4hWBHB9NRDrxcUe09OTZL/IHdgbYPxg94U2IGZMB+I1KV9v5Ja6EsTB4WG3RKtz/KsaPdmNDNaarGpqIQRGvzy582R/Kym3TlXb63X28qznU+C/Lrv1Zr5BqHrto+4vCfxMraVccwNzC02v+oZsLGfQL81STg++LBrHrerYAGY1b7vILTnD6zEM5kyJz0bOeVRkhwDL+Yn42vFm5uVdNs78DOIVZdGXsyST1lvZWgrf2LCWs9BsmwAdJ9Lf2eXsBl06ultoNlPyPFlyYQBp2kSiAxq5kZO5H1k5fWJ6CpLTYuBmQ/I2vyuf8o45f0R1mc9/8jcurHoWymRDGFAj7yGzTextcvChzzRHTHrNmB9LgtNfZ4QJTXoXPWz1NNYKsMN/pW9E4vsgjS5bQeKhcFPb3auoRMHL28b3Aw2As6dvVNuCmqYaV0mqXfehAXKnpj9YLnT9/Xg6yq8rxeJfPDgW5LLKMb6ooSb19PM8zi52jUpeZkl9VmbVW2zDp5NKUxlkiTnWTBZcSPcZ9OP6cRBr9ahLODaOjmGti0dDA0gIcU3v3SOn0skSSdM7sayFU2lepCqkBkgVAmxVmFxbb34d77SbJiPIyVOWYRtXF8faDQPwPF9W2OIV0kDzL55J7Y6W7Cjzz7HjBa6VnCH9/rTJ4Mffnx1HsL48SjVgSxO8Kdc2xNN7rxFwg0i8sfX0Lxfnsnpxz+T/ZSYOh7zNfRcRcvDWmlqL0Imb7wk4iyEV6LW49udWndyz2/C/ueSupfV7pTFGNPANyi9zn10y/f9BbvdbgOVmxLzoUJasm7QxmI/N4VA40BVS+AtnsWZG8hl9zQfDy0ULIbteAFZoQWxgcn6A4odCs/2FST9kNO2HTNG5LMUOc53pfM18BqWyX78py8/tfGGqGecYVjjbtmQQcyZcXBSCPmuvX5wmRMlRDbVnREdlEBYLGFCIpqKqqWbkptaku2J68/ctEaE3jwYjItzF89uhz9RY6Rr4ovy4IgZgWaHax836Mbu+kc3haJLvKf2mu5yHJ/W2nFf9M/yCLvOGfVtZmEUcxorKjHOpPgW52tq85W+FTP4roenmIh/lDlX/xrhEJ/TroaPgL3ElUGxxNUM94Vt45VyWFyvsZBKUr5+iJgB4pwhab43sevK7eSkfHc1H/H4M2/ofbNYrkkjWSqdMgu+NmGcEyOauRsG07vBtLPM/5JGTjV/TMyDQod3sXPGx3x9B4qbvlGA+kmGlUoLazVD7uwt72/1HIMocBnigGZnEtIGuGdy/ODy7dQBvwedmVQKXgaUEI6iiTDFImpSqA/nm7m3/WEZXUa4RZu+vl8AbOHs1Bt6tKkEhAetfSgs0YVrmQzD3R2qXcXLuqvWGYy1FmVqh3dUafMebVyk2ci3kqCPVfiO3RH3/C9PAWry6njy9tSxmOTUcYP4VDn9z0q1KneOdwIe78wfFijXYby+f5HWFkw/G3WRi9h8pHigulxjNHo+45mHkviCCN7/8OnGnO7R+uhj2YYz2cCgmNSX72kvKZH835aVDxIEYDOU3kEeo+dm9S+P3pyiLqlmAd7+a9mNUXmbYZc/U8NURoNnmD/lhG7s9Lh94/6cm4Grg3dbDC8qj8WOXkH367qdKtP/Tl5fibAUNftH4mvGnEi6Zyjk8XaNt6vJ9/FxKogU9w64ulJgK9fjBRPppaI077uIpixrWRlaMCyE3D09NFBlm0RRZeJ3+Xe7Hagy5AAXZelx3bPP8ru3U0mGr+pQezWqwC/TV8E6O9On75R/HisEusz77GMvOVdP6fquCaWT6RhYPf+t2BYwfKq5P/GRwvt4znI/uiwjeSSvq2fK1yPxLUlLoGL8fHBiWfDh6ZvT4xaqa86qUTu6DWeftkgUwy4ms1HtLak2bABYfDS2PgrpvyT5ecBJCQCRSVII9zkPhan8cSyPov9ZGfXNqi7Mh2LvGjZw652t6TU11GMfRsb+pwM2iFAPAPTlT2ZNbZ2uemy9pTBDNoadAK9DC+hm5y9GzM3CoVrU612MVwiSdUqkZ6p9ACZp3Xt8LHLlctbgugpuXGTBfLWcH9FNN87YTWdey63fUGUEVCi3vqzf1j5dDbWNNwBJ2dZ4zj8c+/GMf57qwGPRv9shaIdq3vlkF3bcN0IFlN5STtkpwDdSjNFT15pBEZkkeJNakov+z/mr9Ym83Tl0ejbpTQ1ScsYgwdbRyQHs6S1iDm/nfM3h6ktjT/n0Us25PIqnoDLKgnyWRw2T0XQKwGqwIY3ZeDCZXS/fQlKZh1mZ0b+W8SZfGP+M3v2JVRg0Dj36yjn7iF3iXnwsIOQNagSwEcc913qm2x55hPoSyRh6Ly59mi8ubU7I3N1C1C74UFJhb05ncq9UsSL49NY6xrymjWpfVqyop71RsJe/cScx0k8/IdLvSYK237xQHGkxAmBxrBylMnmpvC9aMi7dSIH9xnH1QTloSzPbTlGf7A0/fA5Fz/mQvLmWmxnCfrFE6vVadpoZqd0Q5mO6CSdJ/3PPtm3wnlYYsJcZd/7v+tb7OQFDBhp66eGZyELp4zfPUqstZic8xArTSNaxd9td12xxTcNiGZoOQQ973amOOIpQIncPE84xw8ztQXGvv6T6iSfbBZ99Dj4s4XxpUuZR4dtYU/H4+wNbpXg5TzPTy3K/LzNNIVUzDfafZiodm2YuMAGBTM8v2mJ1Kav4m+a/Uar+0TCoPrRDDR8HN3CHXX4wGuAxnkEBg3QzQCoj37gMqfmx/q5hO7TDQZLIysnXVA4zPFxhcW9e3PRs2LsrHm26hSRArIlmnRxVOgmIN22iMYoGu+IC8K3MCnqeVONGOzb07/OvB3wVTY8/3JPY5bZ+opIycQsDQ83DprN/ISHfh/fbJS5tRLMwDShBu8+pR1vxiEuMw6TYPXXZuiJwZn2vVd5jXYUXEyDvgSjyeg/frMVqkcWjwoenZ4VG3hcbRt7tKUb7KHqH1TVfh5WjJ8srNTEOqy0lrNcQE0Gt9uPuE3mTC9aaI1IijaifOHVEyqHCiWqYTzs1Vtvufhb220bI5VLhb1kqGxKop9xtbHOA8svKSX1Acy2dfJygFLLS4g/rhKUmAP2sjgZLf9Il6QkqNDDlRkYK63RB/FmHvfTxbwY6z3E7vwDrq9fiNkyNVJQrQmJrSJ7ljBaF5muTgZfqJP+QDnrNF881/dK5ituYNTYrtcpFDxoXmtxVazlRr7OuuaMvbqfIkvTPe3T/s7fMjV+wQ+/7akpztpWkbTDHLJJt7vHYhGckM/7uQAl/QN3u7APwZfXA46+q5cckXe+XHvwKikg6UpnVL5KFDeI1KNNE+JEI0GUKs2Yt1Tr5HMgaAI0jJcf9IgqH710ahOwiH86W6VLYu8+1a0GAR3I/DjJFJbmb89kJN68ZqlxfCDbUCVv8tcCXSaIlDVLs/1TASD8S3W3ve+z9QLyi6ebksqCCY8D2Tff2wiebIC6AR8OpYH1IV9Jtbj5VyFqO9U/X78H7750dE9cGckLDWrVhi81DE6qwfiyH9xhqyPvfb4t66qaJN2nWDfK24nwStjep9JokBgEB5EemlFVCvaaA7euOXSG7oR7X+WsvSJAtvnDln7OPY1SrDlQCIccXEQZbqa/lRXJUX3BEK50X1PeTruOXgYOkWMocMiTi4swGjvs6xjpuSLrXoj8TDjQ3DFOZ+UglRYxdzjBCZsqbO5Vb/OGcs7yG3Urj/FjkClCEnzank6B7CisaFeRAaOFbkfEqn4bnHZjRNMNdRyW3ebl9zWtsr/6/dcDvO0jXF8AYguJ4k3ySxBIcBJ/El0zVSCKt2T6rfJ8wADk9ZD3tQ2msJmh6UaZJPJT48JWuOyBoSP0gNHpBMroHv+0I2OtL7uz72qfllNftaa1kdVk++O5wewEUGpus7TfreTKRQXUNMaVqmaF4/8nmx0smMP4aVcnkffhlmtMjX2011bNKEqxizkgA+yopOpso3P34KHH36duW0wMAJ+IqowRiANVVEj6YpMSp1HKFxb4pfQ2AfqBHR0YUCje4ezSQYGb7ek52vq3ZgvVvmOmppCwEFp79f9MRushsXY60tp/fPQGuidrcifzz57qarclz6/qHNLyWNa/vWv54ikxTrg8/X2x0qYf80wFsB4QdyId5r1oo8PLBVH7hg0eot2iXOFmquG1dfuOfUmz2aTvBFfPaPEk8Z+XNdmak9XemFYd0wlHvcBfGr5m9ySGQNevDH0mBm1KiPkMDwtDhScSnwp3ruq1vfCMVvbbVAXNdH7MfXqIGCHxQOVlPgyWzbqvnMr6OthSN8I+AUEL8/EAhC9veOhaGTq6NFZKcPCVPp8UOhhwaKbjfeLB92vRKvDlelpAG3Azsq1b180z+Wmjid9YH5GK2dTmWGfyOaAwuT5M/JQn0eZ+ai2i1+0zmw8s7IohM/uK7afLFDiZpIW4r/1TcJkE4GZAj8eAWyFZcjSwHhfA8UA47OH1ebWI25Ec2xjmlBqPJ7VhOO2Lv0+Jqa3FyzLJuvGfkYeXJkTJ92RXgsIO3mxbsaVfijdf2V/0mkwvqs8b9qOndpewQ0QkdfF3vd6QNwNnRI1p/PqXC6XCGAXvCBp0q6RSQRZLt7Dn+q8Y2HNEk6XwEb5n+RPV+ccYnBvrepz02pj7jIg1F3advCjeA02I6nZopf5Z+bk9hbdlXLjQK+yKXNwNxeIlWhZHsFsz7u8027AFBBxf+jq1gMscBJVd22u5O0ffeq309jdzz/NNVLcYR72UTyKiqkviXrXowGbTJfOmuvU9zH9WRHw7n6vXWuHtQvQHSAQWS3yaL6wKQ+oA24Cu1BgaMmaGcsoTswdG56NCh/DOT9KcLyYATCRsWz36bLqyiutKgnV3lA7CHhdTUt8YWZzqt0V2p4DdUeb9UXR5ObB89NTfyg0PI0KhzlI6PgaJcXxjkUxZrQCP8AA6A8L2mWEojaTBaT/8fgKG5CSF8DSvKoaGoAeUzo1psGOWqteyjUv2Cpg5rbKIf1NiutTYeOmAuTAh6Rwr5OcR5IaiQGeqoAHvnTLH8u1G77oKCkZbhQVjtfRPrLuA2+z2zvZBbx5Jvb9b6bsFYV7vsYOL+vCCXx6C6+IzXR7aqrTqXBygJ77NYuZVOX2PHRMHRmU95Z90M27vxocVBapct0Czr+uBratDbYMW8xlTb+7zGszIWCGdoxs7pSmBNQQP8kOILaVxYadSAmOWL3/h9gX9sNnHJRebf2mLFZmWLefhri3lFaj2uCzECCngnvBDK5bvg9u/xGTTYuFQVfBM9ml6nSwf/+gdJnZTO7lO1sLnpGOzp8//EkiBSSLGcy5xy/5V49J+wUktJ3r6+1XvwDJq98/ZvtSHewXTZnFBIASX2e3xpYT3VxHZM7PYYW05cxwsvmMdnxmul4rxePuKKg+1HK3RzP4dmKcmDjHvxl4ldK+OqF7fyQfifTdn67jeYri+Mso/rfRUX6Js3sZ2zak7ZmqytDX6ON6l/c+idrZNeeQxd21D1xlzardSA5rvx9K519Nj25Z2vZ3Fl8dPHIUJXM/gU66sztnqnQxigb3mlIjebBM16TULd0PzV7kGFOp6+TWXeiRxKHvyV1FPrrwO9jrZaV/2GhTXDyLy54UPYIe3jt7wC4zdg49rtw59Krz7e/aeVWf9xf8WO0Sk9Tv/9cgVAMWB6asizGQfBVv4e85zZ6FZnAssB25f5CJ6IZP2fR8Atgi38E+/RVQ4ZHPrs/+OYrEHp1Y7pSaTk7vnWhfsK2ZDvys+9hf7e7fCeziaI6UCzXphRD0hqNH0tkzteHzakfVwoTPDO9/K7xnw3q68uBsyBsPp5/IKdrfHCdld9a0/IMUN8TIp0ksCjpD2rW2XzP99+2hrV0Iet8J2uj9v1snOHyk3V2SvJGcxJkSrCj5bYd4m5RbyrKWjwRRvlkaitf3XXfxshULuFf+Qx98+zPvAs37sdsdvry53xxS0UwWdeAjUstZDUFbeTtRV/9oDrlhJY/C8SBtQcc/8MERMIeTsgnw/jg2YOFH6dps0mVSbFC9c7rbrsCZMNDm3G2G5mr+YRpNKaL/Xm8krsk+UY6YAqS+kdo8Cd/mMrcliSdfP9o+zvqEjVdXK0r47nzntmXL+0P5Bx8rWsNgFvOTSg/0zJ5BbSSECI846TJO+Xcb1OvJCSlLM2fdmiMbd7KbFhQFbml4CG/YIM9pWTS9PVCw3X7q4uaW+aev/Zke5tCV/dsN8xjTWrQQ34KxiuZQi/NZep8XKaYTtGuGXvt7SvnaodP5SXBXhvWVuIi33Jp3EKpI6nQrQsDNXYGzX1A3fHDfqynWt6W2PFkhsZzp0eLjOPybmfWXjM7EvU78SNr07JjKxujCaSTPDGiyQ9iddLiiWL+xrNEZdEx5mK9ng4zfmdYq0fF+DzAzD7qWD55vHDsKBHuXbfnovGfMAPf/Y+HSZvLwJMjJeSl+ncf1bzVo47XoXj1iyuRrUzb3tCWtx9fO2fea3n9UbPi+ETVKjdzePd963XLnbGPalgVxNVDJ4s1MeVFpG4eFJSSCxReGSED74obyL5y9oNuz5MR4WMnPZyfsAZ1eegqlofbiSqDz4NiyWpUK2ziwRM1oarij5hxL7UGo1xaYDjPGTV4uJEJbpIkHG8hk9UEhaaJPBXa+euJg/8j/Vm82CNyoG7oXaPEs70b35WHUgVuzpc134gyGfrx7C5NFTD/sWLmz+rgXvIy3/4r0+2edBZ7LbylFZKp2HqTNKMuw4OlIiOA3HsT9FJ+MF2v5o3wHC/o5l3Wy+1/ibvts4HjUXyHtqcn3KSmV2cG+MuFSojERlyEmsz54GSnJz90c0Nz0NeP4Benn/7e0rXduAw/CD54MXwr1c+mM47qHTWxAfOgx82fZzi6lQ8Bz+4LRQdrMXWVQTYW28k/Pn3Si+5I1/CjgtR/mKy+9PXBdM+1gdjxY+7LRrvSTrMbnR8oi/SdnxtK6d4gTp0GK59fT2xwXd54otvEYu+aIrUi+1zu8gy/On0r6KW06Yrb1LcQ6rnc+mfwkKCSDTRzG3a8pIoMEEqlAKaWykXx7oV/kv7nbvI40WbdVjh7dd3d9LT63jqblzJrzUjMv5qaUV+lVoIDiPBCH45dt+VOKsia68I1Q4lWxjQaVAQAuW5GQrmONjhJGH3CCZp4afi/uSZldK7F48bj1b0YowWZ/SNu6LJ63gyHu7TDV/n85wtLZGch03iZU5VeEMHKzQrXKufgSbXWpk6e1zv7+jt5HnUuprCTJYKOAxU9543mgNDcg6mUSqclz3REprBDH1lTi3A021uT62LvX9CF0kXuOV4G58Q7hBawPnwb4ry8bZxTtEPT2xdSJUAioqCvjtpzD0+GDgmHhNbp99C2UKL0razrbp/hK8Q8HrVR/OXGW1eBpDQtuD9+DMj1rbxgaT7xUZHVYybVm6pZdIbfPKVpufVeuMvpZBzP3QeZwbDxb/TfPXQLN40I/1bzYEkpHgmzjCVd8SqY+OHjGN/ZvB4pXcd439IisoWDRt0eM9JCqWTW5gB4NY9WwIYr3TWSuy+DRt1HhYkfB9WUYvO4e6khmpLHfKc5Wi7HQyZmvrzDzT7CyiUhsooeKG393/QiG23cGgVu42XLB9xNvSWmMZ8cYfxcEo9/fRo2cIr+LI3dx9z6rNyhoDdbj3Z4T7Ft16i9sKl8nqMlrt664xovHEd/7xnLhI/Ff7zly2wEw5rIljLB3XWP7fQ9YnBl9XJq3DTvgqZ0JmYxDLu2zN+M2TnUvLt4cc/026d23J92BVYhoVXCeDnOMQKYzSOd2xCO/eYn2SkPMi9mI5T4dgfMjZ4H0L583JVpMzvjOQCz/1ZNXTPHsF+dWa/11JfqZ32TF51bRh+KjnO0R9dr+Lp0f810EfbmvJ+q9MEJQZb5LOgQgppj+bouCNhyZZcAfGy3uh15B8xF402sKPQA+BwpiJaeWQ/80tIrlpo0781QIy23iOuOGEn+bwRW1ettVlmrQdmf4fj463K/LatMK/wQ7+O/0YXZ2HSNX/l1NJN7VIvSOp/utptX0b6n1jvfzV1OXlcmLiZsDvswX1lHLd60TnoIN8FxGr88lohHzDT4W0TmhU1Kzd8QonLukuOi9V/3aZABr0MfPQ4nHst03lQW6jot9eQDROa7AEJKAKaHbflVXlzGvXYBwGcN2yRzx2JuXsISM0Izixn4h6k0m7Fdbp5P8c9dxCXN+PvKvC2D3M3mMnyFVGQ9nt3vjOOWM0DKVVQrEi/yXqW0L4ln3a72KbapYxLuvHV0E4L26vZ9V9ndddCbMggRVSWwe0OVrWlKi2erZSMfzqkA52GYe62oUsfxREq+zoYxowQwS06nJ6E/1nIWn83Yi5AynUs1VPz4qgn/2Ls8twBZ9d6IbslrYavD/TRsv6m6tmhuSdgPZgudf5ghrHWobQfwe1j+us8QbP8bh9HV/7tNP4cVmQ+CTKfGZlfZvM9vgZ62v1X8+BFQsiJ394vlMp27Xb4MfRC0utp6pUWYzMm+8MHRQPXsLlxBuS8rdqyaEjSkDgAlEICMgfjPfqGv+/6lTfpPbOC1XKXjVJbM85ct0YUZ4x/m/k0YztBW1cDWYxNctTnnVaTsm3DTEnNkWHtuZCb8aVBdZQYshNc0p8lHUUy6OLorDigWYAMqlJrnYp+ykAnkUyzmDeQ5Ob6fZIXJC2CZM1x7tAiz+vSIr/T5UdXd3NcbG8LmwEOffV5soZcPBS656hPJcHu1IDTfGPlFTIWDACY1+s+BJswk3l/0tmlKgMYCDyn5YsTMrhlkMOam5GUO4q/8n22y61mqGL4jOFv1iz03Rkf3MN/ftxo74LjJPaIHF3yMxaomnlY5PLusAvIeHry3bm9BXo0uSeREaQyY9GCtzrmtYUqLCmRH++28lR5HRXbB2EGgX4sz3nCQGs3AYEsJ+dNk+0oVKrUuTL8jJAqnMmkSCIB1Pwmx0mTQ9hBds3KfDxJP0SS/wgRGUgxIEamrGnK/ZA/zi+DcXpvEzsk1vopzvOIMr2gEDb9pI/S1Sxs+bXd1C7WQmxYJkL5483x3TkSGbQ8x5Zy8PNiP7jt+5mo4jlO22BD34ds0nNRgz3ykPPzydov9ja1CnvpC1xVJqWYtpgKkkHLrL/QqimaT5serhgVbY+Nlx/Pqj7WhKZavN4N7I3pFpO+7vnIDOHI7R3kzWmfGjI29L59JuCTUly1etNhaGlbay77zi/THtfWakH/MY+g4P5hSXONxoLMUM43/bFZsIk/3nzSaeLv/Kqt2WJ+TqTU/zVvROdX0G4iDxSqm1spuk1xM7TrZFhQpUXxUqYAMOMgTwoZVPtoSFf/mZCZatNh1D1kESuZkhBzSXXrbharsO/waOdbjfUupcdKkxsLbYtJuYtGILgfPSOdPNX9DHsK760YYEmg8ACY1yP84HEclguABL4Bid/ee/rCBE0ThiOb0u3jnwRMvFy0dPW1v2/rIk83RzHH0Ml6RS89MUBRRiEBQJFdqfeVtc2H2SGxOL0F819l6O1xrOzc8R2SKx14ZQYkYdRYafHpUOxbv9cU67XK5/0tOS56pYCGnalqT+BHoCIuIx8Qa5ci27zcGKc6tMoqDT87kIBc4N9zNobE6IUderZe7SLnf3GvXSq+Hv9dL0nFMcDtxZQk1BaKQrD60D6/uKY1kywW29pCegsmQKIoTjL4z++eWtB+Wes10Mewy6n+7nlmNCJQ9vUNUvy3cjFVfxKsDO119Jni24OeqrRHC2MTDy4j0HUsmjvZsJD2d5bP9X+1Kib9dZhupPmjqCM3nNUSU3XFFzbv4OVjtXHlttI2kBZWKfPAZlxjYoxEQeL1+32OKXdtlBFgUr0S7n3IXXTLgiffRrqITsI+cCuWIcl+so76OcW5fhLdo4ZnI+WzWs/8Mi+yQjQahxUbXjHtuEymt3BvTOyCzZbfphwNT3sbmaCsKsbW0SWdWzr4jEOkL+6nNWT7oWyLXL3JdY/rllQ+PIOmL5tVtxsjgqP6XrCLCAQGXCqFkcw2kjQLphtWV58XFLK+o8bzZrybXcwNKykdlvs70/ti82uQuZ5vY1HNtaGZzn3/D34PRmcHTYO0Yyv8Q4OP28LD1c9HDi8xlm3K/eQ+sMtAQaT2S3UopbrieXoC041v5GEh1tHU/Ud70WmPzGei1HOUv4rLWqS/8EpZg3hH1PT/nEHYY0IOg2/Kj4chbsdvIJ6oXY2GH6c8XpATlgDMNjDI+IP4Mk8PHLoIwLmordh6tWKcSVlQtMpq4Hd6bWRJcumyvTZcrv+7zGvOgGP4JP+RWJrUUttvhfZjFEJpaXdVb0mi1CojnvSNfqyBbT3k5X6aXWR6wOY2sDU1bA420Cfh/+x0y2dRjw0Z99hFJfG2zj2WMcvwHLjJ9W1/34SSW7BiDpC2PCJLs1V9/aVdtQu3ptCSJOSXNnvUsMGUl0LGJUKnjxw6eH/bgjsHrOvPFfn3JHfhB0WMj1mbmaEHCn+V8srs+IfvRqhc7cHNi2ordMDM78FNmbyzbXdjPUpcsJc2VW3JSICi29DmYNL8KLWVX/Yxjy4qOqurINrdtfeRJ5Uez0/TzO7LyeueJcsOdttBHzavq29+yMPQ5zoabCvQfnPo0ZD+ZsaJMfHjCNkVcumjwcHSSULYzj/VlXs38uvslqVTlRPyPttnUt5gN9uGzTnw83n3sYV+3l+ah0EDJ4uLTQoyqDLB+oayVjtHiEdbjVVydwrXK9CkkdDzo+Erq/q6F57vPYL6BpMSP+ps1yj+GzcQxX2p20nh7zHK4AqDcqqdfv3FR3IjXON1mIrJr0D5t/UMGOY8B/7+OaxWKO7DLXLcpzqPtz8+GoE5O3HX8FTBLLYOnrKA5vtaKPZ4O1Yn1xP2Btgsw7d817HMGWBY4zJECRk7hJcTi9+hQV4t/gpSvft66ECZCtJkU+l0Kg85WKuNjcGaOT9ocBufSmSeGJJyggRfLUYqwU7+jmTaLbBk8niExraVtp8dz1+zomprofoFm0tb7FpD3Qh5QeCN0NYDD9RXaqyUnVw2hhZtb6N6C+m/aXZsRBVmmx3WNXVfj+1x+utni8G0v6pU6NXTsXG3De7sZeSk/4wTLGK9lJzyTvtpWhuXO27uY0r1Cj2E6ETowHOYSLtlk+YjnfQBs0DCl5vISGrx7kbL7truj81fdUA3/EXosFbusIuxa1hbBzdooLlS648Nub/4xklt+diwZ+nmYSoWB0wVKRUPTMhw9rgAU3P1XxBRsFwI7y6/qk7nrrKT9eKfP8c9vG9VyULVQj6mubzFyQ/8PzK+M6qptWl7J4TeQapUEVE6IlIDQaQoCCrSuyhdivSa0EQRQUEFlRKlSld6b4eiQIj0TgAhoSWU0Eu++D7nvM9517c2WYsfkJl7Zq5rrtn7vncHRHfAonihWGSCIUcOGSqHHHsKwrrhbYyjfE2eWGqqoDrrM+yPmBxQmkV3NNj23letKLu8s7WYQ12/9jmlIm/yR0LmdU9o8D0zgupE3cMsdlUwsTSYEoebd4jEPvPbMqKQHegxeMxc0xbkEWNRBS21en2PGyV7yq9b49g/xZNHMaSjQ2Wrv87q9/mG94the7hgIPaNhIuUJKx0cKuMzrf5hHJbNGrHXRozTYfjUS6H6mlI9RH3XZhB/EZMSSHlMteVEQQ1si77dL1EhXPm2+LGvnBBdke7m1FiQrEiY+pMw1hG/MpWdndlWPBRQiLhTsbo/Ey3ILPcclW0huZz+G4VntR5uA783gFQqc3X5Z+KtiuTO0C9NKTALgaRqVTYqf/m3q4TOg2JzP/K1VrHhKOoYj90sLy4oa5yD55muC5iAxwFgYlbfllM2FUSOw2q2xUQNPLWiEJqVgUOCTfFlWsPN6CDplDgD+K7tto1I2klrfXZS+BCDpUGF1neL6dlKU4KKInnJh/uSEmVEWgGrYaSQRkgqAZgE57PkZ40CuNtealUsn4LvFXTQ/eXBjVJN8042fvQrp6kH9Kn23499idrzhqCPL9zo6FyvfogaJpQ0/ty7ZKSTu+PbDFj1cBRBmSScSU4kB05p7WvUC3pXzTmYiBm3F/J3mjqNzj4zHB0ks5KvG73t2h7B3vUDRBuawZslPScplF9Ws9EMdK6LdB6X4iH0Poh6ZsyBV4XppuftC6Q9tR59/7XJQr9Wnrcj1gA7XNc6g5LvLKE/UGHrmCHDvRQWgnz2y06g0WNAP7Inylgn5b44ifD6yZPx0j5Hhkvg8syjvn6hxrnvym4vxeM95xdGI0xzHBP1NK9OfwhBjFb5Z7xwuVE9WLOqJJfHFNNkqZR2vhy7BVj1Ub1J5ZxY3YhVxYkgC2CXdiVh5zTts8j9uo2D43UOVSOt8Tqw9wjffnR7kE/zKfQd2BZb7sR6snFg56OfEAIMyMDx+Waytbg87xF/uh1IY9fm6iFrhUNmxipV8p93xmqKFZCPldWBwhlkHPQJAscifz+wIuE67Gc8WgqH1kxoluGgVPHqB2zSv9CyXQHBqwk58u3KV8LJGUoifZciIgGfpiZSSiHd9FDaOHd14XmU9YNJcWjRVkGVaNAU0aP5aM8Yx8K4l8FSN+tGYoy4Qfdn15n0M6LbCjZWlmmvxmJXJnvDxsSh6TqUesF7j5uNrz76QKdeif0FdIyt0gkYTH9fIJeFqvT0YFFlG8oAn85JDMLUSrEX3OoyQwK5wsXwOPLPgRgrOJcdgMVxfCOFiq+doECVkWjd07dhy8rXru2nqgUs1NQEJLd3u7eHbhhGfoo31DBEf3q0wOeqMQXT1Tq4KRnxrpJroebw1/5Zym44cdLZvXhZ8tW0DPVnd0embkwiVWSk9qwz8/nrHce3hxdeH+n0aPYBJqQATrilqHwU3gfgAaaOKSmVLiL/HvWi1/9UnEJ8AV8GHAMOG1WdD5beksx6CjOEDh1Z0STHEHEVGtAJb+6wrzTSpk271sjN/oXR0/h5kc353ZE5gBCvd757v0bDzBVb2YojEGF8gwsSZWI4Eem3Q0A8c3vNuEznjtrbw3F9HTtT7qZ0uwuAM03YJ9ktBfCwgyO3+3+oNneudWiXHBz8k6ecS8lMvz+fARfTOJQACmlF5E5VIfFAyF02gYm2oGBliVN0mq9l9MegpyXqicDa2EKgbYeyt4mT+88fdzfhnmGqcfsyTTx/WKE+lvGjWp9IaxIr+/nluJzF5+kXfe8jL4rdlhYeHxXhsqvSTRNFSFwXw80Y1KkEGhZLIeUR2IvIeE5oJD08txK5qFZLjLfSr7vmVdW6tV/MHkHVoZCZJIQ6nlm6AlyXRTRvom8AqysABge08tJNTcHNrSHdd3sPYuji4VOUVO38x0u8rcqQlkilWpvfoxaEIJnEa/m3tT5wUblkveb420qIFQWZvyCWD+in1vtevdSnWvG1R+v3N4ZfrWpeuC2a3U7z0Tcrj3hoON6e0De/EnwePW1cVt/H82kL1nGr22rK/W0OkL1JEzu53Qcw4r2HWU6oYrxHXX0uH1Xscz5C+52tqePjPmtKtTG82/5MVRXhTk33YcstAVg+DZejgrYTrxosmAk8yFA5ZcE2Gh/O++u7y56uNy+o44bfe/nFpxa/SCAeNA+Sj2TwenOgKOkx8nUAn6JmeSpIh2solXPBQpx5ULYkpFnD4R7lCGHskMgNmCYERXMSEvP7J63e31DCjGAx4saxd4T3XDgTHQlpI7Wa04Md1X15ig0NvlZRvPmDq2ayLwz3V1O5rYZAGhQl21u6yEsLcDrixe3bepzDpUQD2lhkqc/D/TsZIt1wXcdH1gfHR/pIeAWRbevBA/w5z5+JNGSoJlBMegoAmZkXv+dNVrtMOGH8IPsEackUg3KwFP35Wpvdt0phwI4HvJPubrjFDgsfPC09yinw51nT7TjOg7VSs9YfoeHDq2PDL8qo5ajBBAbEX5hGY/9kvMFi0oU5jRNC6/0vY0IpB4vwVyN9bl7H1baQPOqjlHB3v2WbJ54tQSMYNCtZcSrEcLKPa0vmwkDEgFZUwqij1/LUYtt2ww7LIkMtBRK9Cc2vVXfX7tuaxkrXrt8CgES3mZrDEP4ivYgqyMrOyP6ejvtnBFC3G5gbnPPZPap4XzjfqgNtayt2fGGhFH17Rk7m4rs3SLbbbfza+4tqW5TI6HuRoSa6B5LloFMVcv3ysHFTQLLieTva6qIWFndqTKrVbip5PXNidIv0KpkKUDQj1zjSxxIOBKkYulvf5eLd/jM+Zu55DPiBaqVs4+9byTeFLEXcGnDAofd+n+RtCSrZ1Pdw9HvdPcZVD6xcAQpCAxNN1Dm3ftckxAkpr2QnltnJRz+6JGQJMXQQgN1zs3ALaONIZSMwpdYL7edkMeDvCPiGUyvM318X9OuAG0fgMRnx7KrUoRCC5XsHehj+ZCaHSNBXqrXT859qdDeWORXKm0olM4aGW9psqMmEQMC3/W73M830Jlxy5X3LHognr19R1ReHMhJHROekWEf9Dm+KislgOGTTBCNUuaRBw06HG/cqKdaXaljwO0V1i6uGeTQP8S7Pd/08PyVolbJcVvP7El/u6vBi5ypGRp0KL0VaYe1kq8U1EYDfjpCso5UOuPPPy2xv9HWCWO8P6ytq4AXv2x2z65q45Xr8Xl3ROlgHwfxq49NW6i7Zf5RwyunXfPdT2jDhrLY8l2d7h5/iqPTu+UvucrF3bjS9KP0X1vgi+jqQHW53swnqvW1gH3Zrqu7SteUS680kZ+Gfe8YGZiNDQj8zvAZ+3UHoouFhHTdj+ncW3UvoDd/A+mC4kKHtMiZC9AAHe1MAESZ2JKRj/IwcrKKpyF+z4g3gBUTBVhNtfmQRC0XBNkw5dZ/T9DPP9ney5VAEp788ej50u/7ym+rbUw0TDlebyhPf29scwylPM3g5ggSwKjxtCpyiPQB31bG59Sut4/elvKdkKqosnSq2lcKZfWHJgtwvH3PzRHjSvyhVQ/JYcDhsgabcu3c9BznKv+AV7HgnkqTZWcyz4jXlQ8+52stZq6ufL4TNkTY4Hut/kVCZ/cV8diP/2xxBiAa3A2kWQHxzFgeOVXWVhh02Sjo9358p/9jlUOfl4tSnCr1tSL1O9kLO0tgMvD9O4DVrlgKePyw41+zstrb4frnJ4BnrGjWUf1Hr/Ly3YRKVKFcxeK18BtzooKKLVkHNlPz862TWXFVN0TtnmozJg4rFeimjShZJHWZ832SG1q4HmXOcWVdyuNKvdYKeEAIHARtMtNmN+ky4gKf8/8MA3mL9tMtFMYXfzCNnPTq7v9NR8xE17weCRmuhPi3hFgH+zj61TOd4gv6kj9OLuq/0XdzUpJRqh0D2VmQskxqkkcOtawYB6eGCP5ijChVeqvqyMI3KXaF+RYZWbh7R5qTgZ6XbRi0YIK6iMQuzk+EqLnsuSijWCnLM4VDeUYUSdv+LIGyr4Myv4pMqY3Rfu+5viYsw77fDizLyZAcOVd9hi21LCbTOb7asoK6afRtvWl7QKdtXRUFt27RYczqzbaQBfuBw7ytpuh9CtwlUIzdyxc0tzUvCzhU28pPll3pvqz7aCUys/P9cBDl8Aqw6uqy/o5p7fZLPNvr60oXhfihkmqy0EsX6J/nO6uPUbAETrKhDEOVYogODpE85LQ/YqCj7cHNyQllB6q2JKDzmnlKzr/td7FuMNDJVr3dm+f/kxsed22vHxeW5KVjLm+3WG357PrWu9qbga4Ln36dlX4/OKisH7mdO1pX9eD2u0/6edO2dcMK5rYlFnXnOFOm9Lsu+BWO85m+6iY5eO0a+83dcuAc2oGga9Bb+MU2YYS3/49oTX/VcGeLWDM6v41X0FW46ZXLI/ShhXo14nfzljVq0NJ5s7cWq38mF97EnL/ZAsqlRYy8Lfj+SKM/0hDgD0+hWlEccn8gBDNjgVfsnTydVDnFLWjzhITz/8WDspi95H/vhva6Cf/zuDajN3MXWxgjsoRO2aO2B2jRJG1Eov1ZAdXSvF9z+8NvfzZC9+HqVeYHRc7XkGW5poZBVaxUId5T0E9B0ciGx8x+5ub4oMQI6dxwINpQrcRs9WXCpT3GWbVCXXQE4nfO/HzkGGBpLPeOL13zfUfPJvx8uS6knmLV4svMHh/hw+OA4gunASG1zj4eNzGMid94RAhPYzo7Rq5aVwT7iPALZDGUwX0ePUJP/IJGJSYR2BtTpSEr0KyR+zYAXU7SsmFUUCCIn35id5tFwI1tOPQqEjVY/aaTzdC++S3V3OpCMVPT0f3IEIuNb3SZ4fywkGBqpu8VDELUbpgyaTpZvwq6iuFOhaagz+oZjPnv7S+9/Ij13HgikJehSO4LnFoqvVIW2dAqBb2ammIpj1+BJjfzm5ctH71rN19XaA7cVAF+tDyLpc7kHxTd/Il8jRhuE9Z5q6rFI9KvdYPCwJ7Z7LWnxkc8C0pkg6Ke3zw12MEM4cnbal0Tbq6o9qXI+NNrAYcbIQ8foL9+a4piNlo/32j1aOPJtIHVbEm4pPmJbr/CGLW87s5Ay7m9l3eU2fP4s7bshaB3Bhy+fRcRfErbP/rc/xYjWp9MzkJQRARz1LXUMU+r+U+d4vjXpXnfrj1icf6TPElTYVbYYuMvaLRZEg3zNCMi4qF9PqKXQoXq4v4ay+vRFkeYCmpMx5H3oBXl5HaERrcmzM87iavppLrOhryvmx2lqVVPUhsabV6b4bcqkyTkyDRUxO8oAg0NGIEi7fEKhErumWq037jMGPuFaNSrVVai4voatP39aqi8zcV29iJVWvW73Nonk52IPC2VvIJA4qaj7viHxXmh+F97H09eOSxR/JX63ZFymzycdJLnwkGL4i8ltOFRcN4JqHewnwumOlSVmm99apYURqg+Gwup2jVamejSqBKT3ArICjj7eqp6kA/8lc+0wvaaKklxcD4OVMxc028j5sLcR7c28z212rOMq6GiO4huNcB4ARrp191qeHzhMsdo6BU5cVxfTHPbcYyys6lFlr5VvHrikSdQz7Qyvtc3hFN2SuPbtt/86yWgdfDpDwz++PdTW48c071rX+3qBrr36M5kELgwgPCKQoVyfWMGRcoqGI3gErE6tKG0I8wOyvCcGeInugi8iKORM/7TMnCBneC4shAlUp1Rooy5fcHLBjyYrUVh4G22WWohcSP1MxeyN/l61grs9mfmi+6uxIDlhjW0xtVU4wV5iQndaVya5OhnKA0IypgJlxIWv+x6Iwtz2u4RmWediOEVmRTv55oyDV8EIZO2Nxe7xkJGO9rYJZrGfnvR/QnrH++FMzp/CuqR7MMIGBnAA87Ly1tbDI9D8DdNHgi+8liCq3zPtWM7UDsAtx51CgB46NSRHfh5C0N5RJ1XKKkIs4Z5G8HP4BgSNgnIwsJUJId8aFmyPqvpKf9VqTwHlXX05iouFUhj5XdTYSd2XKX/NnFh9xHitx8C66cf0tQ7u8Ek0doQn2O1AYy/2rgK4h+algEjBc9Vi4+AeHOKhm0Scgb82NG/zFeamuMEFUwd7DBtyBdNI8ohqL9j/5Dc/rd5Bucon594e5SRlyDuDLpcBtDMcY1MkiCIow/4kpMBf2rzuKXgWsKNpNEzLsaarZbhilffGqeLSkjvbJ1Cwq7mdXbsGCvk78plzOZD6zLgz+b3znjCp6i58XPCQjPe3Qa1umijbL1wXqBpXtgm4cHx8OfPkT+A7SvmsQJWNV+vHXOPDEH1BQNF2LxWkjxzFvUD+dd+ksGSd5jfHUBvQDGuCGry2gQ5fDJ+iUycoY9y2V+ctvKwiS3xqa5TRp6qnhf0hTNT3/GgNktp4f9PxZP1px9nkT3s9Amwu9+1y3QGwWwft9mAUwGESIEglZIGpTqjIdhFoyyhNZN241K5HZUdyE67I3wMDbU6FltM38u81sKP1zfGx+7M9CsTvlJNp4Awd2r2jfAv8ZisaebplmiSP+LAnVyk1nKDG6qUOQwXEYJ8bGmeYmxZib8O5i/9lV+U6yQvLvimc9gU5egMpOdTnCzyEdde3NO8xX4HZjZSZHL89XvllFyhAMgWtwx7trLxa+IgyG7PvvyvsaCYFta/F1KsFuPH+XLpKyA79+IFzREfIuje3B5oDfQXc2GPiuRAVAoamMSCvssA9uddN8sbIfqUa7i1zelHQR50ksbZ14bmrvwsL13bPHAH8GaMNbst4NaIKjNVkgSwngqMygAFWZRZFHatdVs0W5gHiINr44YidHNzxTe8prvAgfsBTHqX8oG+bOMfNHuuwN5KdBuZg4eyGyAAhvrRCn1WLiH44BXHNO22XEgm75TU5ceP9pG92aFUJApEs92jJ3K5k5oORD7jgfxQ2df9lGZ7m45/xW91xzivbPQf4pz/LkG5nApz22Kfpmg7QR4eIgdsgw6Yk2qaOhSEINSp1F9QLrfmtzq3YVux82cXKSZBg69cQtwBf/ZRRvuBk6mYpyKriUnUdq3YlBSXcOejABol2rLQc0KhMpJJoATS0FTjZW+OsJnnqJrrIjvQH019PWo6GJldggvsNBjYM6ZQPcritz9Sm2Ym0dcOl2nBriKg1Z/0Ix+LT6fSkYxy/Y4ld1Z2I7Z0IhvvitzPotuM4IedigNHFuN21H+9giJNlgLWd6b5T955a3yH3hm3rKgrCsD0CjC8zdp88w/GflL/4be6z+R+NMc9IoJLYbWhcNaOo5KmtJ+BAA2+sHwEtHyaAk6InDpuowa+GAlZ73s43hyR+VqggiCa1Id/+ILnjtSYy88guQK/2TGOLojfHbWZ5GquYWakPxG5fsGFoxFP2FSBCxcv+m4eBoEQXza/vinxyDsunQ87jNigOMOTmf7cwSO474zuStUZlbcGbVl4HrkK6Jv6N+rAU69818rat3kPVE5kOBhJRlrn7x3vpcUTUsGvk0Y2ypjoaGuVrklismJ6kDbsR5AyXzDOpJWiraVeGVECGfvZ1b2bJlvU0qB6l2lRJP1vXnzHjEC9Rj1cSv0DPpDQ2Vjac+QSzQZQy/1Yg7I19OOFjXojcI8g9V11Bu8Wdz0XzLLDfOQa0KMIJJRBLtupF+puephjjdiPqOCCY1IuPIhNJmCdAsByAagyIEFM5HWg11KWU22unaWirKRx/SdSx4WAgyMSULyojdAKn6TmezYGBZfBGcL45EGXn5DAamf3H0iQenE9o7URLRL3Sk5KeTw3Am12qnpMm8ff49kOJD1IoPHlV+UlFVLepRQqebWOPrU+GI3Y0I0RAY5M3YF7hGBZmAC1GTY79Z8lGpEX+G2bFt1CBSOx2vuzIojSAIYCaI0DCpLAdwWpSXfUQfuC+KFZuGBef8ciV+IGx4kC4oAr5ehdw+eHhzHqbSQeAYHaMHIB8G+mawFDWFB7mU7lpj5+clpGofGDHa8Kw8yweV6UcevYvBwWswWPTmpbE1idGYXLtB6BNjUPjr3JlKzrnQhFnCp7s6mdXTi4byYrKZMi07bG3eu5SfKUChsApWUleKzUwO27EXd8ZqKWH8KDVb1LAf7UcTdG44E5cFagI2ZS5DsXVLd/1x4xrTPV9U9vWKJGypOxeSiMGN5fbKAOl7t80d7zkQTpCdAY2v7pmB/ios47OUyIWV4EBuJAIfuti9d14qgi5K9exUGDzqwAnMyUBaHhVBVSDCBnmZLmqAc0uAbH993yQ8PKAmunFHM3bB4PTV6X/DRa2LzyPvD9HVebFo+r081M+3Yx3fz46XGumscUrQcXgjb6ASK8PWAjZmrKoa5Bn73lVPhOWJJfc/e+YNA6TxBKuTac16uD5P0pqW0PvzE76KVbdj2iCL/BJ0vdetJLFmlzWeOKB1LU3ommv3bc2j3Cq01ruaAky0cyIYmW+DbM83twQfUQi78Z95BmRZJTouzduAiOFbFTI2J5cFp2OtN8fuqaZAOjULDXy5DHzAplVnt6FfWPk64XWS27pKg8ZoreVywzC1ANgsIIVtFaYEGwnqDGZy/vYv8m2jeazMBFEli2uXrGphleXVuxPk+eeK3rG0w/SDC6vTVs3qke/Opf+M6wyKTqgWWJeO6gm+mVdww1ZZEyY81Vw7EhI/qExganD69e4S/Lt+izz/E0TR7p7nssavBhQi8g9h0xNaCTLKogeKHueVJ3aM0OnE1gx6+FCZTUtuFM5ccQ9NQeixDT8WNMZyD4XPBYVAITkg1bran91qMTf22Ktf7wZDAXa/s8ccJdnjulyUzVLXPY8/gfckZWmGsbAOMUDdf3P1GhT4URO4PkCcwLgM2C0I2CyEPvV7dzE1u3e568u80fMxXq1ZA77GRe+qy7iRqWhSbLYLPQNcq7eIuakBUC0M7VemQKBHnVVd34sWMi8bbxwdewH0Uc0fo503wPLuzmtbK5LoEZ7Oj3ZHw43qdimnc2W+7UvJX49uVhHRuhbS1u74mgty/TbF5Seb9EICVWlDZNIpLAih+A2l3qM3Wd+GWDcRdgSBzYfNP7D/U6/6He4BIyVxJcg0JXzBF4Ls8rdttmwKKCIuW7cTpkY0uY/QutcrUEpr19ZZoziZ4BZ3bJMQSJujVjPM9homGjpIactFeeTNJbrEGcxc4CQa7IrAFhuF0WffPjMOnolN63bF9z9V9c83b7mrwgfsB2AD5QOvFinyaJ1jpPDKrv2p/v/Y158n4TQOuzIh1DQgMVqYt8MbMT09fDpDx635Orj7tfV/ofOfnn7NXD1fGemqswP2aAQBvxOFxdwtiyGFCapbUPowmDhFX63fKBIA9lgwSDfH+wPYRKYlsds0otch8ohK6VsFgvMAXhuzenBee/VbRWzAdb6R88l1dXX1A7EFca0X1+LSgoXjYUYQcRi2TuOP1kr3xuGrDmr/7qd33uSxIVDp9TIyKbyuUUcrzmyWRadHMvGxsYFRgsK7tw5or6r5PCf5ykI+7U0WKU2VqVmRCHUpt0m3abZSIYR+9jbukVwimswcqh7l6adr86uKDMw6uJHG/7DK/2RThAAmdSzEZtSvU936EE7zxwQG0139w/ZVSHnN1J+zpXQ1+Raz7BB4TcUgTZ9ENb3gkdBCpSXZnem1Uer1aqV5rHI5+Hj0r8N8N/BGx8pnhUKII6Mp89SOSmY9kG+8ctL8lH1fyNPI28JxzQuUw8i5MXgdCmEc0VFRjNzLKZJVxrgkh8Mz9EtNRto2j1b1WgQVNU0Laq84ZZRU53PwxLiM9M+rLho6DHzzmRlOlYVEkpwPA8jYpULZt98o/A5PxzevevGNbNy5ssmw8cdFxYkXLJp8yHFyN3hKM8Er44rskVX7IdaQuR235V0tdMSbrQ50JUBxM7KtUNXLsXXMxox41+uZcAi9N7HysFDLKZfwojU/1AWPGmU05v/U34DGT5lvL4/q6LXYOq0IKj6o7w/1lznqwKP60AU4Rh2i8fSmx+D91wEhuSIIQ50wCHhbbTHE1BcC108k3hGppnPpaCeQF2YjCNfE2VPZMydxBxu44Gp84E8IemzVHhtbiYrRnvOrft+pYT2KF8LKnx67prFv/S0b29JpR8oEQQnGFWH5GIDLOUByvoeMvRNRunvdnrjp1I7MuUhZ7ecdCZwLIPiyAFf0kD1hdg3ZdD2DSPXOvNveOocDS5yi+Qxy4I/GJr2mxEiqxVEVRi2r3kOjTu+EyfmepGetncJ2azf0fWL/bKDLQtu22OFUbSQobp7LiC3SWF4ky6uWjlB/kw9k3m4eGXDuQdUBVdWL6LPWabSW92HoH9JFkCM/HMvwB+LBJ7rbMphx7WfRwe++FpYvgM/By+yrT3FrHxUpNzIHV7C+WfxzD/McmAkzR9w2kq1a2MY6aTHwx/CxwVd9KglDT4sK8dr/Fh3zlWTtw7rujCpLYKsvURcrACYwB/G59IB7d2t8uRdogBPdny6LMrWBNaZEV2siegcsYsT2sZLYaO8FaQXboWInCLMDUTucmh/uDfJn9xVsusUUeca0wDjhg0D5X73SKUdNp81A9b2iIMR0O5SnZsLGVQNhoGr8ukgYv0VpDTq5oqqCdedKVSfcQAiF8Cn3PN0z9vKfiCrWUul7UW2zyP0YhZG3VTfpHpqH1kIcAQNS7RLCNY+E8yZQA/cj4lmGN9y771TxZhHrcb5Fa3HyrXMxvPybWf5ssaj2Voyps6tAiefJQVGaTBuZ0pg0PYIj3pQEccYOI+LZrAUi2AM6HNgZq4ztuGqNpCXMT6lGdJefsrHrAQ5bjjRnGb396BwF/t4e8O7/7TRIJpyTKiWI0tL5H53HKYT4JfViUFlg7NWvwNPRWyKdZ+2OidgGCm1BDtE8CZWxuaeHUT9+gh5L+QYa80AimSYz1fR9dWme9t+5MSWTTqFqSJFAlisMmpFU+vMXXP7Aif7e8AsbhTQDY///w3Rqpl74RzH9i1eyz6f0ScNDqZOPDP87/8y4HZb53dduRHyBrrARl9E7xIRwj/0JIMW3rRucCYh5IXFROB2vfl2miJx4vh734BM7ahCv6C1V4duOA0WWwfIVCO+1SMa+8wWoAhohZev+Pwf4xSI5MoW6hthftoAtkm6HD5NF/MIjX8QbhxpxLqklDlSBlTb43PIJX2fLeKZ1fw5gbSv8A487amL3GEr8X0MDP4IokACcx7SUvKfeLDCU1CzZ91HRI/QblPvFuGf3e8/ZuDOxGohxzhwj2G7E7MxI12g8dm9hGaDSXkuk8u43SKb5CHeV3su+6xz37g+PtUFhSSTIWjG5SLOoMqaaZxYFhvu6PdH2xuQg8Hjwfnp91OBDndO9q9bWJ4RgIoUVbaKGzUft7pCh5T85z53t+18z5VU4XcUUUcKnmKSuCg2WzQESU9UowVKfKXjFhB4HVq/mwM97uIlFYuEL9Eq2DuWK2efWl+LZwpkUJxGOCPrA27PpuiTj0jgFwklb/m1xn4xnyi2p5gqsobc9VFcOmRtJLOgFmw0kF4a9zlf7dDgfbL2/IYwRhl3ZN0SrSMORB+Pkg0KMfbtrOpSXaorYXTyVItr1aQzYmuyZKk4PAyU4QPfvsuXAykgtIowy3cQIjAZLSruZR1HUn7TBhvh7yRMj85mg3KuGVvO/IicfjWwHhpgXLzf+FSDi2FyW/ToK1AWCWzw0hxAP9UnsLT7yg2SEXabCKroyRL3C9fj4qAj6OBb5AnH6lwgpEisRYgW+2BXtqBUKQETGYFgl77df0h80FNrIX2rAWRL/u4ZtleY9E3NVhp80nuxqO/C+YbN9qi+CHyI4arjT6mROOQUrUafJRhOPpiZYn7Q0SsQEsWQC7YjOxdm4uXm2/rNxJIMRN4hppb2gMUtAXQd/KwbuXVklhl3YhnssabQxkMsLTROaW4Yx4ZqnSiPbqDnsu4wscnqvNf9Un3FQ9qMUCUDg7IuLGUUBzNQSo0GoBRe2/4pky7gZeuksbFvnMhVWf6v1/+lq/kH0/hy8aOH6td/uRd+mCQKd2RI3C9ZNYsLXY+4stYACcUbvrbA6+svk9vmdoQLYCaaHnJbPRvGg+L2Sn/Rn3E66CDlnHx9qT0g6xLYUi08jfweub+/KFFJGmPznmmIUoEPaeSrn33Fx+l7vPGG3K557OxilgWVIZmKM3BLQdUcDcu6HtKGzU9duTnvLtp3ukyHhG3sy3Ixgd1/pdS7dRRMgsFDrQ2VRxQzGPz1nF+EL90rWaBk1ey9JnKg/yY7hjlOEvQkbDDGjzRO8Ji/P7Uln9qZDd7uhmbE2tNI4vOcha7k5WywUh3tRfqwpT5b2mhuLIXnduD/7dZcPZGynKc2oI9Ey5mVfyhsi24Li1agyIw8LttelbiveAE9aLVDSXSSSMV1swlOPMsrpxPF5HI6jynFtTCDe0ePt5vnYtUpMVCf/hEhLlIN+Lhatzrg5D/Gpml/3N40FTg6yXNrUDIYOJynN1FmC66i0yQfSWxKbvVYJJ4X6U/B1RD2GNlw4wmomywfv/Xoq4rIhGxmtJL2A/YdMeUxfB807iYbubV/aRFIa5sIh05NdPGtM/6fxufnLGNt9qBosNL7zVEaQL6+cqKUlLYlQMfh7x41ftim5Zv/M8OrzCidkfdaj2Lieq6aWTWamU0nv7GFvbCOqzMfIT/OMPx55Gag87+wGC1Em/QpaX2NfXlefv9Fxic8r+hHOAGzgQyJTwoF4gFdfFfioIXqFvp27Rid875GYiQOsA4moPCkkkTxkEfz2O3yWdy7QlPzYRgA/0XfPxjLKaZjFcCB/cwx/r+VzeHB+bd3+fvY3/Yc3XFif7bRkT7g9U4GkvW1gH6Y1/0wBBJjlEge+CVdTGXyPyUAkxDB1n4BTt2jSxP9sQdqoPXRPsqj5+2JwRhnSDQ99IQjDbVyEv+ohpVcZZ9Q+lGJ31m6vrOC1jKlX/4QfLPC0tY6EKRGsy25NB668K6aVTzYh1Vwp6Ird0siLiR5rpG3UNOfXK5NqosZctrvaTZIG2nXZUdSY29inTUPqjyk4NxfNVSCjS1gF4kV5fr6kCwEprxt1byPzj1JnO70QxjRBsjrBunuCfbXXDAjHEjswKrvYdD9UvMCQt0P54SVeaKaGY7uVqbIWs87cOfNptppb1QOHi9YKyrMsC5ZKR5IHasGEbonYlkygdBtoV//LtL5Ze3HxS1G8hpOIP8OJQ1jEiqtLM3EOSmqCIRpSEKmzPCfLjomZApAesefdISnY9QpZOPStyZ8pVvatIABT/7FG3oJ71hZbScBe+NE/k7/r298+nkFPzUqgJpMNqK9REJOwEJr4OfwXjpW5pk0nVDfGyPjdoN4rppjuSiwvlRKQp65F91HFCszKAxFqfI2mmPb3svqCmYmud+1m1+1Ip1bhro3pzv+dvv7adKzn9uV+ul3ZilOEmQPX6XJarUZB/pm5DpeKTKGXpsnBb+F38VSKuAjJI5RODL4pUNlXSJxVMljXD5oOeyEmlj5+qsmqB/dYCoZS7/rrx7Hh/3QaDxkhPbtfn/jf3S0p+NdNt6NBNpR6dvZbNn8mm7Uq5liXiT4oQERDaibWDwc0HvZSVqi/bcVJD5Ls2317p6wuwc8modj8K+WodlCQYp4RqT6cteaONNQzc/Bm1lqwkm/6/+euZL9Ud/mVCqGaa962J2Q5QeS84kueK4WecA/O9HGWkfBWgzpfoOsd2xUk022v0c6WLsyMXpgPToWeM07QVx2orVEM+C4OtUGQ51m/W7MR94MHj3iIH/PwUKLE4t26m0eXLJ4c+QJ5Iz6nf2HScVOcM71GcSxWsdLQMtHHTGx9iJImGObcrQkEzx7zpo1jM50ebztXKgkDrrkKQhKJ/3+6gibPvaJbqB5SyN1v/PiIhDSKjMZjRGMfZDfEQ84iSBijyH6Laqxkxc7+NAdv9yZB5SYWk3IaqZyIOPFKJIYm2s7R7HpqKpwKnpZIARFR9kCWMdtJGkFnRnvRe181/uY/oP9/2woyAG0rQauXqXaqnotH3jVd2D2Un3qS+hgFMfB5QZWSVedND3MvoGhIifMhd1OFoG09RK2wA9ryIwWisKM/we5Xdt/N/srG7VbmTm1BDY1Ujp/4aY1YxkH9iHOVLjkt4oFll0LfDdQiLlnKx44ungVB1AZKbFbQWTgVxPhXP9yIr+FsSX17E/StYCxYdLm6cKOU/2HrV+kH6aX3Wes06V0Lamju1SkVucv+RgWtvy0joFL9ERJ/93xCSY29Ln0zt/OjrwKlebh4JPvBzysrNGAJuyhcQ3m00QnH46oPKT66ROdqpIeNpukCyX1GbAOCWNU4nJ93vtkqWm0TCNhnZO14GhI+iLh2a9ueFTc9Fj/SxOuyH+kRQ1/FiMo8JxJEYRt9O2EDbl2rKQHp6A9gKRkqQlr3HUpXwc+Af7Ss5KZAjdE22tap2HfCexOmkqQrZ3LrgzEys4YSSIdTclH1mGP1drh6I0zCjnByURmTplW8myVhVVlHNX+q7tpFdavETSU2QyqIxzSsum7hFa1IJmfP0cMNcdTFvg9CfnwwVqmXfrgVUwXcR1rh4u2nGuSDF0fdgBi/O/XaCLu81OE0g1ACFd7qOpZ4rgugbTvTuti1A3VcqMTmxf8KRd6DrEfuVFSugZiW6mG3pP3k77ukKDE604nN0Eg3Teyatx+3mrUi8PNndWe45Bg57EuKfDSQpBUpHKnP3H3eBlZ1dVjreLlM9729MveL9LGDh+rW5FHn7+JnHf/6Hxy3ppI4Pk1E4eSEZ5U8K5VvaCwVrkKXOnroZWfhUvycE3VMFOK2sSqhCKyCwFqZgaEpg8NRG2otSIF792zjFTZ1BU9qe5zcZWZ19ta87/aEjonyGz765Ce99dpZtZFHhV3Te+lFi6vjJaK/qGNT9Bp5vD/3NL6r+BaLSroamYC+Jum74fpcmP5sjJEoZ1q6+4nQWLiq3plDclZQZaPJJiSvWkRrPe7GYxX0Nk8ju0VSq3V+DqoCK/z5jOwHzifQFP8DSCgYMdY+19sdBKOCuaxGnxZ2O6CdE6zrfpILPKfya/3eDT/2qlNPn0CnNb8YTCh6zXDTq7Kre9YiemyABGqCCzOKtpjo4x79uD5b5P0XgMsOqpxJP7ADn5X9w+V3pCiOuVfB23lxdjnH+5m3X5OwhXj03HEO+CnY3I3XMYRFYkN73xNGiZQW1mSmyidFjOr9ikW1FTNf81nUY2LSHZ/Ozd4BTiGAFncfq4GxzlK4EkaSEShV6sTHEv7QV+P1udPCqtA/wgffut0NgPlom+6G/haflfl2iwGTEfCjO5os/d2DovLQRFSBsEfZ81ngCIEpMRneFpwt+dGApatuDmSngB9d9/cwp3Hw/KQpJwrlrTmHKBiqYCNs0EhpkEGUSq3Ni7BfaL6eF2QNkEmjrwH6cJslcfYq8YAvwibYuxFm1N7KAQivlgysB11TMfAaYHybDg5ylPWofPpASKZWL3VgQsBc5ZGE8b0R5fwZu5tOTRYr+e8EAOHQ9e/xNs2f9Js7GSUQNrbZGsRCrpYl9Pxe2s5mLNo2CwTkz3DIR4MM1mOAr/cwteY+w4yyr8I1LQeEPVDWHbHr0f/Wvnc+VpsLL9/J40e6JxV3as88pubZO5nxcXqP5jtGeZHp8lxwvjIaqr09PLgf81K/QfsxwxH/YSEBFl5JZF4Kg+F8iPTqGpJl2AEYT7cA3yVSKtD4Q+PAT5QSmPuSOlOJ+vwRC2vR37xu+kr/7ubo09zn4RvXHQF737CK39RiNWmR/Ixh3jbtBwvlKdBwZN3msVfkJkah4/+4dW76LsUQ+DP8tyNPBoyumg4axOxL2oWrmozJssTakAv9XnkcBvEQZm3W/Xixa66PA8AUC4Uu15kArni6LlttA23KFWe0XzorJcc+pN1al7dkGjk4yg80PzikNP8ykHmVlzSHdel8JOz4Vfyry5yrUp/A+t2aPIfB6cLxs1+yDttE/u8amqg06PCejqY4ifQZH67c3nK+PCnsCRiyoiEw+gfSJC1Z7Q59Uq5m/4mu0Pdsac8PXYVlfwD0GtqZsJVRhGTr057deJWd2go/MkEs+BHSa/VQIXFddQpvCJOfgfBnn6zJezV9UkE8YtgguPtQgOaynXoOYH2Wijx2grXp/P6071K/dsJHG8qYoiT+Pdu91syECkP3XDobrsR/hngKqiRmoqkkvSMLSWKWZzt9KIdZDE4lTfEF84IHY5C9bbWalRUdHUsvWvNf4Jbf5PugoWK27Q0TEnrOWG/smxJEhFxy+VBSkyfaxqsc8MQRWa1WQfYl3b3y8knnb44FVQXvv+i1D7hoq69qbg8boNMampq9ZB72c9ZWagsXuqUc2FH7Ospo4FBP/eLGLeyfRnM1PxjQsJT+e07yacdtuxOd00k2EJ/CB0XmS6mxYjx/byHp4T0rMnXmJ2zqlwT/RNVedHEVj3Obxm+3rkrGUa5cLt+i2BEFp5FTsWCqvKx1Z0qzciVbsGMHL/AqSFpNc9+f6ZHxQ9NgqKonO3pX/eYPHURZydi9xWViXPSn6SpgE0Jxzk5aG/jQVbqK6VCHtIjRYjSjuC68s5bmvBCHpZRv7lSeenSJ83i+9aeh4qNcFt4EFX0rO5hrB9f0dN3PZPSW7zVokxszq1XV261Z5OSNfzVo+x5hNuYoq81OxcHJVIiSkvGRPd1gYTL0bdhxAV256sBDO2LUmu3Sz3lOwLsA8Jacimw1+B4Cho0D5nwY8Va1qQyIO5ha4LAbN0uFq4nSQV16d/Bvoenj4L2wIWb4bgC0Hxy7d+H8daJNA3ZYWhE0kXSEy2NpB9E6iDTnEHDXoL+jB3zxeybEqe4n8Z0VcYBfuCfSQMUnNIDsM2HM99385mGrIkIWYzpAvsv1VZNXKjfeD2lS0Jj60EuJyO5b3Op8Edlf7LMt+2rZRSQy4egLYZtrN5kQNC3H5US4nFmcZvYaeGDi+Ri3xLJpg7kI9c18iqfl/DMG1n4BMr0mp+wCjtyuZB45ohYKOporNqhtYGG3R0VR5ue3pq5NXa/cCCCI7eJqpTUbE7e8ETmISReasddOt/4muSE5nelr7kb0+e6wwi0k5qqXAuCe+Lmgep1YAdrYCw1/YeynWyFCH6DjplWbn7URNgJfhJoxOE6OjnIzIJxo1Ird2sxeu9LtNFD13TM+s6RrG4BH7xN2XHm3jr7n4ZEGmharpTmfF43UMfISuyRt1o7931klMiVtkG8TflmBAR6Z3bbkqBEFwS+4NVezwtUvCpg/WA7fb3G7WkVRYP3SjySE+v0MeiZHg3UV2XJfxBWnjdN9HzOjOf6MicbUKL9iFZ+4NwQRrV7J/E+3DKnCUdo09EZ6YjEmZb9KawLps/S36upkHRc6B0K+FT/97rS2ZZAdPd5n0ERjIF/KMnOIuEMNa5ZUV6h+yPdO3x0mQvOkaJ+1BIXax2VSxPFV6k77r7TgyPtoYh4oV3ou8Po6Hj0yh7W5DKDWSVOa+pd3fdbyUNPpG6vcnir7hDf0sZzo2O916a7cV0doPR+0ih8Oaej/iI2Gq4szRDTNBW7kt6pTHhJrpa2gPbTVKk4svGV0S7z44Ex3ql+5lx1KZy6Fvfxd2C34W9Cpt5sXtF7X+KhBtL9DdtFrDW9lHtWEccpvwukW5VkwFsSow53nUEPKana/OJXlnhphQki7KjfUwupqM94a8zra6pYxdSgEiBLvBEqE8Za2rveYtASi7PrSOLM5F8NvMLsH1OJwelmJ377U2c7qNjHrrd0SpMspMZegTn8OvUN074uqPdnXxJR+jj9oKjOL+EdFRnJG/SLgnRjca22WeqTmqru3avwvF6r+idf2C3e24FhM3Sh7dFyjh10P00UdUzwliPdKEz3Lrdim8HPlT/9vCx7ir3omNc50MWLEFdUDZ2VPyJTVvwF36YmW+fybUGIcCmaU99m0mG2t/AqPvywV0HU2fd5ydvkIc0kYc+IUlKJJVEoIkWWsYEqpK2syS8JFr7b4fZUOyeqy+h+0vhArqbxv+HB1AvMq8yhchnz/Hy9w7LyKdn5V45s0zTpvKlD9KnkX8iqNmUJftya4NzOT3CyBDtDZeigAv1GVIq+G4p3Z0rG9g4kPuueHsEMZ4/cQTVKLbxbl/c8uqnqx+JLTA2DPsY1rVQwRQmndXnbauESTcaj69JfF32mAJ1mLbpKZpsV+2oQJnSGdY55yqTGvEwWZy7ERrrZzDPT5mZF9lh3P4ehZdClFY/Zrag9oeg53pWD+nOER216pBGVC9/tj5b2VHSaP6wXOgH16SV0cOcA6VfRXTuZ4LgtGeCQZxB1bL5HH3nLPK91DS5YGiv5DkR0ifpSiFr+I0zRQvNfXjP3C/3z/ALJJgpfCDvSdsViC9OKZPe9nLfFdYdHByn/dtOoUU7IEemx73Hqkd1JbRC61hgo2bndLQlmlpqn/+X9LUMeyUZNu9MY5jMujdKLDJWq+KHUgS/KJYjfcf5034IbKfh0a7V0Ys91T3WQ/9+5mSLTq7qw9CPRoV3zm7vqHxXOTQWc1u9uRC/dDFyXi00UysivZWvJL4yWBVJECpwUNpv1jQCjXNsmyiWNGMnfs38Fvi42MNO25Pv2n2481uMZtzZTYxuNQcWeZDKm1Akt+q+Df9Bg9VIhl+SuJyVayOUVgI6AG/f6Kf7mfp6a+9pfVNyMSa0KiC0RLaC13v6JLrxXaNxBQdq5pSJ61y6PFIeWfES++Kyrcvpg/GroQFui0kR+NSfx01oGvrx5jILm+mzsoDj85tU29JH0yPaPAqjGQPYAQMbA/ONv7T5w4IlHym1gFAjP1LklZxhA/ywbvbAd5OrV5ANKr8GGGFmXMznHll/SQl/tnMiCFF0V5f2iN0cvtWS7+3pnxwtl321jpYn34VBqPs1dbQue7rRJRpdGPx9oi+HFDzzy5J81fO6+GS4ztn9igjwFqOm8lHodzDRjsymb7x2bXypUanJqS5i+XSosWTWn/Cxxsx0mz/3Uf5cWCzhudjAvbl7XgDxCxNE/fez3/iA4gi4za3HTgudT6ApDCXf+4kvpyskvRPVnSJ36A9PDieifc8E5NO46GH751A8aN8BOobMUcNZXwo08yPyJwTA/TyiFaUImT3mB/dIffSlR5Upeyd/8hYw0oEJGiHU71AQxWjQ5Nl3xvZ2gyKoXkTJriiyjleeB/3nmtCewOICl2JS00lQ5KvuWSZ2t4TyfX7TObiCjuBnn3CuU8OCuaogKYkN9U1zh1GpdoaqW79dK62Rp5eenHPqzzCB1NCh4ZdgpDfAqVmIZPuhJyMqaelqeuj2B9l0+dd/Esl1GUkYRSoqAuGCoNjSkUkVss9/DoJdzbh7FYkt4bKwN2qb/MAHPlJQTH9EjdoAhaiBjoJULNK6EKj/XNJs1ZkUnMTDuckb1aSrPSihU8lXa/mVc3S7DRxG3omZhoiz17LGY/muXJsj1/7aeHQidWT8MlEmj+Fb1oriTg0Y7Pe47xyNWJFv/Hz79f47TYJnTFfT/riGfcllTBxiRRLYFTmTvwc+LcNP6cPmDeiu701Egp3/vMjbuDJFi4rYuHN740t/szWY6O55pCI18Od//6dGedCHJzJGQjavGtz6TDNUl4cIg6cQ7BAtSvDLcY2b60qoS90nIJz6FP6SaqUQFa8I1G/f3fbeNoPgGsjR7/mTgZ2h7pWYSQHk2iyhHY+oE5HKbpvm/RZIiTWFGf1KpCQb33LrxRqzIEqb97n+kzRfSrQveIUB50FF/AJamQD5qcGndLCvG6rm0pp4kYRhILyIH2a3ro0o5csHHZlNHpOZOzL9zxFXu2IqezNEswxz63Sh6DUhK+N1/rY6eZiRI2xAHqaBEUWU9iFsiX/eJyic0f8+jAmngGhOb7Wmfup/VnD25wkU6gYV7icDjmGZAVcH4NRgoU7+F5p6wTiUUHjWdUBmINvxYWT5rtvsWnsiAM0wpCI7O+Z+c9SVZhbA/bCF4PYsSzguwZz1ZGZfl2aWqdsF5mR2vEZJF9zwYVg5pMdZVc0lt0iaYp+H1GS0M/yPpUUGnCdYRSsE31YHhc2587j4E37mOzpGZhRVTEQSGZ4RraN9vSiJa9LAzIypu/JGdGnxZPf4WrT6S0O/ZZqxcPSM67e8rr70asspL+pB5ufFVcJMLmLuB3WC+8DgCImoHB+63lovDzNL+mVEY9GppUZVkVFlVbH/qa3bEE9x5KoICs86jyil65T6ToFLtCzOkGkNJ1emkO06AJURgo60wWz4OIT7ArjNexZvTdaoVoK8UwP80Tw0hJ+6SmYfi7SHNiLrJ/G9fh7j+v7OegN12DpaHNnzdHC9utiMRVHVCwhuiAzQC0rwTMzMvZv8oFOtKF8OGzNMKdJGe7RlqNVG8+xar7s4Mitb88g6aif4Ecdju5uI5pvRfrvKxZwWx0iS4WZzZvPinlB43NLxb5fJn7YbC8DLTuTA3nXYmIxKIX1KmPVvKWTWl/AWq2lz+csNiOZxMK7FpcX5wKrqle0xYumhFJyLu8fCFryyqu/KPGgCMdF+aG4R631WLhuaUZYPGqDD4WFHpeDJs7rK/inJqa9WcEFVBe57UurXjX9/rxWklv8hmMzhEqFz9jZh/xSW6QzyM9tBQ2OJ7hPl8npJwsyXYEkiSrrdbqYmGProWWEJ77HQ74UD2tpjqa6mWWJkpYSRWTdlOZA6cPSmODPYgaBLSkalB70UZlMveii8OPte4UeFs5JEJHLlmryfcMfUKAxc8hIuam39QPIirIcsiqOU1BesiPTE5OO98w8KuJrcR+LpxX1MXsRzmbwVRwoJ00mxsG3reGuBqR6CXyyOG/I5Yju/sateqr41eEnYn+2GQRS7XjlLAceMbkQmvuMRKl25ITRgoO8MPmjnMepeUeEc6BzhvKyW3XV0YACrBD3/KPYOKRMEgepH5PboivFs09Tro2yizny4Wqhtl3sYyvtO8JWQ0ztxyP1vSOYrmmMj0zJOevW/6c8mwnkGNgKQb+POFX85htv2GikDAIIdtKVrCoEmjjWc0xx7alj3cDXFUeL25MCVQ07hgXoqGzNvO/tfeaLr11QN2S+dV5b5OGLimWSZbBhsKrrsaPZbGQzUI+zK08sUdkW1nNWi8MkzsXRVunZGoSgRrHNJdXxB4KLkUVGeurG0xINHt6rPafjSHl0XxYVL4rRuo5N8Er276qLf8axn+eB3eoILCrBSKWMSbuXxVAAw2StoXh2QJjiGvXxBDu7MeuwoxawUlXJhI2VHIk89NOKd7+Swc6V284aldn18Q6ZyPlrUsvJoPkLim0B3VgEAwBw07XotXO6i48RH84b4XLsn+JRrnAcb7qDCo2bdb9XThDDT/3GF4POb1+1oRuPTyFqh4JP7KIXeS8W11u+R8OgkKABUvnvFE1XqmMWS11s86lOgjiqTGC+90H5p90lzWXl6ry+DprTXeSyf3K7l5WS5sw8PHqVeyH9gpU2w/t4pvLxvdmDOyeoHAJcZMkYiUMWoTBmlv0YU6aUooYXPjdADQYN3KnDnh2E9swIG9CFlCi5smnPtUYbRpf1VxWVLZXziIXv6hhYx8UfxIvoHOAoAZhVksCvqx1YzEC+1MtiNTuS55njWEF9T9vwgHjmEv1Ajop73ySDcf1qOw0LTWb9eCndxj7BzIL+cIm0ezwRcjm3xplZaemOahTTjqSs9SeG7UkPZdN7pl+I2TC/GmkqX8Fivvpkz/BObH53JtfyJV3Pek3fuKedPt+kKkvPRPsqnOZZ8lrdqlZlU8Orz01JK6DJ/jM5VyIzoykXc/Tc2dB/UBQ/lYpEUwO1FEKff0Rfry0LfnC+89v3connLKJgz3DER2XDRBpJxYerlr/eOzKY5dyQotcaGHDj5AeDnEi3eOMBXvfyLaAYkM/7t2Sv28yTGnv33yG5z9sfyLw+2EsaT1btuGE2wO4QK4wBENX39+o71TZSR7igqItrCz+FlsifvtY0FInkRau+dFB6tVXG5HYZTTpk+QMu9ZAKApUFH2nqjwSpkd89tZLq7pt2L8oxs5SjpZGnth7rBfJzHf1FD+AE0p4CDcpb4ZZxcxA/Od8Rz+9rwaRGc9C0xzdQvPtdcvtDVM5vVhiueZyEObCkAAJC7eZFeuf8jvmrQ65bKrvIDGP5dz9RJOKy5AgLNsyCOWbSKBa+7dL8nbllS9a1eL70CaFIDldroseGr7vH90t233+Tiv0r5iikTHFhTLRKYTayTDdlkeicdV6xbaN/60kL+xMYhjs0vNYdgcsran+llkDPz+alANhKeA4EaDWr/v5auPZ7pvY9P0eOWSyWliRzMbVQ6J5ON0Q5rouNSxKhEih01UxlDi+Mamcsqa1tFclwqYtlQ53nUqmWblaQe9nTa+m25VDa3Ic9vPc/fv9fvc3u/P+/P5/vXRxwfokCu/Z9RU8sN6iv0HMurmFDC1azQcnYKlj4u4tRpfkm9fy/CT+gc/zEFjPmw0GqjmpKUsSayPR6D8zbQJBQ/WO5ad+ZQX6cusrbVV3oEDTPwrTSHKx/0UMKPfUnRnm8i3Zme9TIix1V6jcB8ZqPlFTzZ8fxPzg7yWbdfHwVICOiKS3tMzEWGPwI2VyPdFF314+KE5MzFN/3vVgh+B+02kJApTAeletM1pA32K+X/MVc4oeO3L3i+uG9EfqQsly9ds96K5jhcX7NvD2KLHeFLmA468IYXBJKM7P231JhsRwtZFq4v7lxJYjP49oqPblIY0hwER2oMWsv7uyWS2uYwajES7qPHxYqH753H6Q1RDk6k6Ci56SN/wJP85VCqlgr6XLfEORCvAGRx3xrM2Y3FGDHmMYUW0jF+C+8OmJEgfuHUnCgDTWo5uzFsV2vQE83bTME6Eqs+BV1xvSdx6pz2iPABq2U34F/MonpfA3TFqug3qMniIM04+DMk2djlGbHas67qav47pI0ToKrkqE5uJPG2V5QHecMx9SAm9sSytOh1zJqYeStQhsN0KU6B4sJum32VuKSZ46eLGHzizfMl8ixvGMz2Rzzp1BBPBd8LhbYJCRarSv6G29spsi7xyG0ma+uTZ30aEv/grLJf3qit/r6jRemPq47mBJe41WlKWnuuY46Zk3rLkGkbtfclIfv1veEnaqPVCcye6gM8ILjXpde1vSXXffrsbDsbGIibOIHOdUGjTQ3AuN7svPwTQLug+z6HuVh7NzgKWe1a+QDXhmR922v4JIPH0F4bXqtyDffQ/1SV/o4/3QnmK/qG1cTaUd07NqGwjTqS8v6x99qaKKCSR7IBtins7axHDRvAaiaf6VK8A8XhsX+bIEAm4MXxu5pjjgbFifTxdUtHVhGmwqlMuvLZe+/HxBzx+s22rdiJ3l6oEyD4UbFazzsaunnomvUpc+CsW1xXxRZIZsOZ9V391h0AJK/cjxrS8bGOKGNMx8oIFE7tqwtEFL2IbfPMXH3RcSAFQl9tT9msLUeDgeZIOQNnU20IRAsfRSwHF7H5/3wORdBJPFDJ/F61HEUP+383rdlqQZsvtKtVrdfTo5yT8Q96OKgNNBf6x14B5/MeQC/XzRtqo1L1fU5ATecnvY0Prh/YbU1lwpR0u1NSY6N5PpOx8+SkZjXIU1K+9M10SZOIVlr25d60o1FWWVYMjRF6beiU+gYVdT2PbdqeXUEmPq7v7L9csjh64KI9i5FroCW4RJfiFShssNmHFncyePbIAlxL0nmofL36dZe8gLEa4u2oSFktizUiB1uMNh245sa7KUwQykQMkYO94pYOFiPGCuluaJEgM1sPnJCCzLHPJ8qP53eRJyt6WvtQfJji/oxvYzBlfBQRGpLR9ANeeIEuhQJ/X12GIyPS0seO/RYf/+2XweKCj7dznh5KEgFEe7wReQIquzB4BXbL8VIKBCv0BS6E3WFL87T1O0lFrbMFCrs9SqKFpYwNtf0PyTjHPZ9WrQIxz3PM3B4gJiA4esuVhl2Je84teX4ak0c1tpr0wxSUYn1NlN8xS5J3HA6c9yba9IWeN+0ZOz8UpQJWHw+24dYWZb5s5qQi5giRW8YN+22MXTirIS66kcnS45+ffBjrkvAXLgfE9/G8Qs94P9/iA/H6q9Kzt4v9noZqnGpk7FJG2CLr7ZfuwQrt6KoUE7RppXrL/FttzOp/vFjYUbsQ5ZVQEh9isTiB2HF1GwBAETGC7+60dK0abtgKLl5wwIbI59FVaPgeRChHufCib7Lw4S3LHXSkF4WaA3L7HFj2wuDvxmsSU/IneU+7mdsUmRcb0384aaKikorng38N+VViit/9JESXt861yifkBU2Ve/jGomK6Y1MXcfkvPxABC7leuPTUJLwcJ5xzRtv8Jzd89nTQZ9bJb+lZlwIE9+WaToOp7Y5wNEtoRoqRZAwNRn9fxhtYiy74IegjpVfs8f1LZHDy2lWAmB/Y6hFDbSvwaV51PnLxiPfVFb3G39CNV1VXPJrJw6DAgXPxbnu9tFXuezkd4leT6eUn1vo8QO1jpZlOTy4vbdL459auf9HM2Cb0CmQVsJxsFdG03400bf3lQF6TRxrrdE9S9UcoeX/gT5fVm3Evt1iQXjLBdBeoqA1OgMQyNPKehyNipQeLrsALMeJGa2pbw1JPTe4ZYUSwRHk+m0/UIh3BpHu1v15GliOzUGw7f9QdXcqVR2WmXycvQru/5HHT8j1vH49NoiR2xZaCQL2wo6LGzYiZxss5aVR+mC5edAR66Gq73dxcRMRLD5Xtc5gik6YVmbxZNOX7oDEi/vRx5qI8BMf1iR/l73JVOG9vLR+KBuvrK499sHPsAxDKTyuQ90Rq9YFQpXZDf+Hojtaq0BunjxYWhZvcLxPMDNqceQoNy7my52yMGFYd/MmAC1d2/Pmx5tFgneJM7AkDci0Dd9Qnc23jfKd07C/AXUS4XyuKaNdFRki2ARCIGBUnMCPB5SdanhkTYLOBjX1f27vn8k/XgsrI9XG0OHtCu9c7r3QRm2qNlpjJMNLSVDuDEwbSgd3aAgTdeDgKpUx248Qq2dLlACH/UtabJf3cYhuCn5hCa9Pr3f0h4WF5RTFc4Y7geA5t+40VYb0QiROqwDRI1ppeRHYLaGiy7E7fExgQPfQYGIq6NbQ8UP/5XNthyn6wd7ePdsYUlTXEUpkOQKkLUYrZKqr5y0I47PZJevqwMzj8xObJLFUrdCSMkPZED4/TYHESHublz8TYci/wbSI8MT/T4TohGfcY0sRcgM4ZMTBDTXGEA+LJoIZzz8CHB+mP1s2gOAJtNxO4Ox/aG21OeJYhPgxNrM3ecUvk7KIYjSh74Osn7pDFxs01uxyaPzGQmu66kuvtPG0BmAgyfyi39ZeoDl1KfIF2AZ2VEDRZe7gT8wQnJ0XbZJp6RkOMKZl4/mXgW4LvjhmHMkmmgL1vDdYSev0h6V2ivrcMCoF4l6o/dGj7Pn04QyhhBclyuJTfZn4mLa4LnNv9Qw4zaWNrO0M0+ynN79K3okVVKtFO4ohV4dtnWQC36e7BqC5ZTxHbshIcb3d0c/8W/6y0OT0buVcM86GNNSW+i6xWm89YJWm5UFqNu4DM8l1oGTE79G0TnUF3UAx/HdSD5O0Tx/iJA2RLPQ6AZfUVXP3dQeJYGbtwH5nz2lvpYavAyGIP9hVAV8OBAUMysx7sJLkD3og7Fteaij4XSeQ4UPyXJ3efVnz3UGL0RiN14gULPd88IknPM1216+FdtBAEmkZDPaHws9FoDxegdSPI59fdYw38mqc57f4hcYs+6LQCBsdfjKf9DuzJJulA7n99EA3fCsONzdVlcQ6lFLB5Lt282QB67itpTeLCf/ji77O3bvdp/A5a7bJTqKzXqc2wheDw8ctwQDqiRTQST1/pT7cZvpjtVmeu9kGkNYD5aAtu5iB6PW3SKH1d2vV2kbXYFbUeLXp3amDMFP+7QDr6UucozT3m7oin8r4+F3meFisH9CEQNndiRzN9//OzpyIt1S3r/xnVmnG3XvCNNtxzijpVRbrO82JA8jZECTKHX7v2mMbQUP1UZqcpd28+XhY71SiVPtYZwHFx4kZXRwUKyyl9Dq6/RYGSDsOSs2Fgp/zOMn5q8CEVe/cae9EeDziabIPYJjI/9ogGY26+FUgx77BWgQi7hXEv9oz6q4GZ+YzSGO079CvatEYtMEuHQIL8Jc22ihuguJgmMCqKl69xYkCr7t2CXCPQ0R3j99GvJxumyFk/86hZzXrIvRLn0tvdvWE6EEiEUW/i8Mgv+uQ79R5/skUny25lu8ky3GLEAfbLbdxcg0Iwd78hDP7PT6wIovsi6z0VNcxmFwZpbpLLIoB/QCCX3cNSz479O2s/+SfqVhdlqRswnaYZqTZMZhpkGLc9OCAuDfKWp8zMgb7ykt8+v0HNPjv4MPx238pCbKkD3vuL0ee92k9Te+OtAillqfIM5sp4ldro8yPWNAGu5D5Cs16hZPmLxy5S4/ZK6AuozFDw4dC/AlFizZx+KtT9DuYHwWJC9rb5H6H+F1BLBwhfI2WJGtIAAP7XAABQSwMEFAAIAAgAO4BVQAAAAAAAAAAAAAAAABYAAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzSyvNSy7JzM9TSE9P8s/zzMss0dBUqK4FAFBLBwjWN725GQAAABcAAABQSwMEFAAIAAgAO4BVQAAAAAAAAAAAAAAAAAwAAABnZW9nZWJyYS54bWzlXOtu4zYW/t0+BeEFBsk2dkRSN7dJi04HwQ522g6Q2WLRbhegJVpmLUuuRDvOoC/Qp+if7lvsv75Jn2QPSUmWL7Gl2JN6p0ESXXh4Oec753wkJfvqs8UkRnOe5SJNrju4Z3UQT4I0FEl03ZnJYdfvfPbph1cRTyM+yBgaptmEyeuOrSRFeN3xLTvAoY271GN21/b9fpcxSrqejRlhOOg7rtNBaJGLj5P0Kzbh+ZQF/DYY8Ql7lQZM6o5HUk4/vry8u7vrlV310iy6jKJBb5GHHQTDTPLrTnHyMTS3UumOanFiWfjyn1++Ms13RZJLlgS8g5QKM/Hphx9c3YkkTO/QnQjl6Lrj9nEHjbiIRkonh3TQpRKagkGmPJBiznOoWrvUOsvJtKPFWKLKPzBnKK7U6aBQzEXIs+uO1aMEE4862HVt4tieBeZIM8ETWQjjotPLsrmrueB3pl11pru0O0imaTxgqkn000+IWMRCF+qAzYHAwXVNkWXuWdQciDnY5uAYGdtUt42obWRsI2PTDpqLXAxift0ZsjgHE4pkmAF81XUu72Oux1PcWKqPL0CnXLwFYeivg4zNYeAX1oVt6T+jc01BXOtRZrOWHZbduT5t1h05SEFaqUfIan/kIfXcHR0afZvoh52aOR3rQv/qv40e6S4V13s014d16NpPouLVZRkeV0VEoHykZAuvkXySqxihfeT0latj5EA8uB54toNwHw4eQRABCDvIduAS+8hVRw9RDwpsRJGPlBymSAeE48M/29ONuciBxtRdD+IQYejIRg5FWMeRjSB6kI5FiEtCQcJxkAOVVPeYqCaoi2wXrqiPbBijCkMPgyCFinAN3RNEMaKqMvYQcZGr2sO2Cm/XV0OHJglyLeRi1SBEMkSxiWCQ9xFV2riFuUQynckVEwWTsDyV6bTCAqQhBy1TnclJK5nwg6uYDXgM5HCrkERozmIVDbqjYZpIVILomntRxqYjEeS3XEqolaMf2Jy9YpIvbkA6L/vWskGa5K+zVH6RxrNJkiMUpLFVjTmNce2cVKOGC1orsOsFTq3ArZ17W/tNoQTNcg79p1leirMwfKkklmkBLPl1Et8/zzgbT1OxqsbVpeaZKz4LYhEKlnwDzqp6UXZBFe2oNFXSDvFxOZA0C2/vc/BgtPiWZykIkl6fONWvbwOq96aIev2eZ1vVr8pJAVOxh+2ej+3q14P20f3DZbpvPq8gYgu+1DbKVGjXLl7mz9N4eUsb4As2lbNMTxlgFJlS6/Mkirl2Ep1rgY+D8SBd3BrvoKatN/dTuLLMCAaRNjyC5EAc4MioOA7MUcuooVVSlpaxtIRVupsIq3LcJ1pCHwfmqKXAf83QClVxqSa2ym5ErlOa1SkCp0xXyvsVvc8SIV+VF1IE40JVbCp8NZsMeOVDq23iY7V5dbnmZFdjniU8LnwawJyls9yEaM3dQx6ICVyagsIkTMH1DxiAuRvyKOPlwGM9HTMG06VW3V03buumbrJ08jKZvwFf2BgAzMky8A8YhMr8pnipU6nDVR5kYqo8Eg2AJcZ86XOhyBmQTFgPOxWi0Eigm5RCKsN9O4uGbJTxBHXRN3D789lvv8DFLAnRyySBswGXGQtGkkuI85kcpeA1r5nMwPboK1BuwpIEnan5ZR6MZvF0dJ+L8Z0Yi17Iz2EckMcAKz2rTLNxPuJcvuELidggnUPJC8HRUk+tNpe6+xzy7lSiCdg7hGAfx1yo8bzIuIA4AREJV+Cm47z37C/Y+sS0BE46HObTWTKWHOpl6O8ZG8rpkAuAIAfGRCMBd0MQfq1u5lMh3xYKJwL0vID8A5LKVOi3/w5iuHehxXM5m0A76JYDffYQhAuPlYtq0/KYT2C2iqSO1mQ24WCgym8jrT+AOCvcQK0hDM7gtCgd/ADsse7sy7CA8gcCGjEwOFMT6CJFxewetKu7mm7tyzQsey4dcGlyPjUNICAxboJPFkkHTaFBnbNqybvQda/WwbrWVs/ZonUxrXoCpfNYLTfAoxJVGRLehC20umyQA59KWHFBRCfLFZcZWsFH2LLUem6h1kDq5F6t63x1NhSLWuRBhIi3kFrYijrLfCqB68ewiMl10q8srU7+JsKQJ08K0g0E/1vw6HWs/K0e+gdhVSJltYbKoQVULqZPCdXxgZJ4HSLnlCCC0DYgOe3DySsx8sjThpPzGJQW0wx6U82URoZ+4a6CCH2EqoBC+3kBaq4TAy1BbQzY7sGxYmwB+iuKmoyJPZi1jzQiSUtzETCXxI0MRTcM5R9mqN3d3a13R98Twt5Ewy7RoAqNu0Zo2OvmIfjIbiudclh2cydxNoblHntYbjksp22ouxsuZR97cF45OLe5zbyNYfXfZWBtxhU9nTlhFxccRpyKpuySpbrATa5j1X5sTVpez3XsfvXjq7oFgxkt3iWBWUsGs3q0rI1raaC2EK4wCtIJrNpgvaN3HW9miV4RdpYbYcy67rwcfmehZ7H8BC3MQeILxIBFFhcIyoDrfv/516qMmDIlowrJSiEtC2GNqU7OFnAiyfkFsr7//nvADhvbM6JNb6CeyXIkczP+YtQbPjYsx1/6y7zT1J9gQRwKY1C1YVUIDzadDTu05m76qnI4a8PhcM3hvobVKCxowYE87S7dUsE1d7R2uAXd5RatgX0BETlnarPyu/l+47MgaGl+VePoAJS7XdgiGxG/CYC1FQAzySSktf13hmXz5DdZT372CU3gu061yHrEKosUM3hPk9qpL4g3mHNaEOf0bHGOrtEEctQcTrcR6Ia7Tw909nA3vNrxG7r6sb15w043hZ1ulnaCaG9qqZvjW6pMC5uhcAxLHTfvbiVUjC4RUWZUxPrvM8WJW8m1LiexEoQpXkGqJaHi8wfId09lqKBrw81VSV1IDVfD/3qh6ZGeV0NeQKf/OVpvZmawn53yltyU73HB1SdezajJRKueE+xNx3hXOj52tN6Wa/+z/Eyeq1cWzsvG9BOpbUFbFCxb2LPmrRnssRlsu03qz09yxTGk51uOq2bXisQ187ytbaTrgasnZyuPW83dtccvDzP2IE1jzpbuMlhn7PoTmiNxdtPZC3HMBNLr75xABmy6fGKUd+dd1n0hWJSxyWTPhuO68uFJKe8b5eHYVPlp9+Zh1Vcz9jegR5qt5WsVPir93DLISWfWhaa76HwjB91EbHcWmpvWKxqMDosqohaej7WjtiL2moWcVczqunYRbcuOtqWq/u7JW+1RaG4e2gbqYV8uwOeMU6mHf69VxJq0dcsOQ+2jCrUzNUuRinKi820A8ognbUE0dR4HZLvl5HYou5QacDBth6Z7ImDuJB7xBMSzc0L4+KXGNptjciS+ahIBoogAUY+ASE3CdBQ8GAHiERGwF6ftfHCUAHCMbXfT4am4vzgMyW5jJNuieFiktSejJnxzKhitmg4SQrQ0y3MRh2bzfKheLTEwDgLMceBbnusPvMAf9AehRW0/DIPQDd0h+9e3s0g/NtAv1uTBKOazREAc9aZJZEYlkucsGEdZqt5I2fpakBlyol910soXCVaFe5f07Auk/p8/WAOv1MDWqnyTUN6+NipI9lkEy87GjxDw0yXmNsj668gSnwZBGFBueyS0+kHfJtgaWDQYDPrBEA/ryCbq/f/4NCFtteNSIPr7z7/83wPaXwc07GPKXexj17JpyNxB6BMWEI84LHSYg1dCNeOT/FSD9DGI6q2hU4e09Wz/Rm9zWFtYkbSc3ZMtM/t2G0U3OwKnza5l490RQ51WI+b0nnhyvxmO+JSYU7QOSvFOgvJ9IE5yEsR5Ioi+D8RpnwZxngii7w1x6iVlSZjatlaPavKsbR5U97ZvGOBHbBjgQ4l1T7J8B9yKe/3VH/+PodriLSS6dUep9cRpC/6khj9bubeBP245ocLHmVD9SVG3eq5+9lW9eoa3PgU7OAdgSJYA+UoOqO5tzwH0ETmAHisHPJCM36f5tQ56XG4j455/GOAfrQKu8/sG5LW7G6DL7Ldfo5agF3Wa7zMehHqzV8Qa4t49pTRQ5f5ju0E77tdwtuT+os7TcP9xPeAPDX3c894N3a+lerY71dOWdE+PRPd/kgSP6++24P7D0b35ko/6LG255Hn24yyVn+gPvKI5iKiFGJsN0Wue5WliSnWLq+BJaKKz2l7TtdI7AUW/Pbr6kefiixNynonh8ksG9OfkrU5pY7zdtrhHaG3qZBVWhvRWf29fff69jc3Jis3fqPQ24kLmY2X95qYmB5n6CInu0XYlTs/y6h+H8LbbtZ1Z6YpZlx9Ib27RfZPLQ19QOqLr2ntMrCYfXv0jJ+oLctS83+5htz4ncdoZ2d4wsv6of3Mb2++RjWFSRVdsbNzY6VGr7sb0IRNf1r9VQV2X38316f8AUEsHCHeHgQLZDAAAOEwAAFBLAQIUABQACAAIADuAVUDl0uljbbcAAPa8AAA9AAAAAAAAAAAAAAAAAAAAAABiYzFlMWM4MDc2OGI3YzhiOWJkMDM0OGRkY2Q2ZDZmYVxadWcgRmFocmVuIGJlc2NobGV1bmlnZW4ucG5nUEsBAhQAFAAIAAgAO4BVQASb1g7Q1AAAZtoAADYAAAAAAAAAAAAAAAAA2LcAADI4M2NjZGMzZTQ3MmQwOWM5NDIxMGIwM2NiYjljZjFmXFp1ZyBGYWhyZW4gbm9ybWFsLnBuZ1BLAQIUABQACAAIADuAVUBfI2WJGtIAAP7XAAA3AAAAAAAAAAAAAAAAAAyNAQBkOTEzZTYxODE2MDQzZGE2YmQ4MmFjMjcyNWFkNWE1MVxadWcgRmFocmVuIGJyZW1zZW4ucG5nUEsBAhQAFAAIAAgAO4BVQNY3vbkZAAAAFwAAABYAAAAAAAAAAAAAAAAAi18CAGdlb2dlYnJhX2phdmFzY3JpcHQuanNQSwECFAAUAAgACAA7gFVAd4eBAtkMAAA4TAAADAAAAAAAAAAAAAAAAADoXwIAZ2VvZ2VicmEueG1sUEsFBgAAAAAFAAUAsgEAAPtsAgAAAA==" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" useBrowserForJS = "true" allowRescaling = "true" />
| + | Bei dieser Animation sind die Angriffspunkte der Kraftpfeile die Pfeilspitzen und nicht, wie sonst üblich, die stumpfe Seite: |
| + | |
| + | {{#widget:Iframe |
| + | |url=https://tube.geogebra.org/material/iframe/id/332275/width/1080/height/450/border/888888/rc/false/ai/false/sdz/false/smb/false/stb/false/stbh/true/ld/false/sri/true/at/preferhtml5 |
| + | |width=720 |
| + | |height=300 |
| + | |border=0 |
| + | }} |
| | | |
| + | Ein weiteres Beispiel ist das Abbremsen beim Fahrradfahren: Aus der eigenen Sicht wird man nach vorne auf den Lenker gedrückt. Der Lenker hält einen aber fest, indem er in die entgegengesetzte Richtung drückt. |
| | | |
| + | Aus Sicht des beschleunigten Systems werden wir beim anfahrenden Zug von der Trägheitskraft in den Sitz gedrückt, beim bremsenden Fahrrad drückt uns die Trägheitskraft auf den Lenker. Die Kraft, mit der uns der Sitz in den Rücken drückt, und die Kraft, mit welcher der Lenker gegen uns drückt, nehmen wir aber sowohl im beschleunigten System als auch im ruhenden System war! |
| | | |
| + | Im beschleunigten System, bei dem die Geschwindigkeit sich in Größe oder Richtung verändert, wirkt eine "Trägheitskraft" entgegen der Beschleunigungsrichtung. Diese Trägheitskräfte wirken, wie die Gravitation, am gesamten massebehafteten Gegenstand. Im "ruhenden" Bezugssystem gibt es diese Trägheitskraft nicht, hier kann man nur die beschleunigende Kraft feststellen. Aus Sicht des nichtbeschleunigten Systems wirken Kräfte, welche die Beschleunigung verursachen: Das Auto schiebt uns nach vorne, der Gurt bremst uns. |
| | | |
− | ([[Applet: Ein Zug fährt los und bremst|Hier nochmal in Groß.]])
| + | {|class="wikitable" style="border-style: solid; border-width: 4px " |
| + | | |
| + | Beschreibt man einen Vorgang in zwei zueinander beschleunigten Systemen, so unterscheidet sich die Beschreibung der wirkenden Kräfte! |
| + | |} |
| | | |
| ==Zueinander drehende Bezugssysteme== | | ==Zueinander drehende Bezugssysteme== |
Zeile 49: |
Zeile 89: |
| Die Person auf dem Bürgersteig sieht, wie das Auto gegen die FahrerIn drückt und diese Zentripetalkraft sie somit auf einer Kreisbahn hält. Dabei ändert sich der Impuls der Person ständig. | | Die Person auf dem Bürgersteig sieht, wie das Auto gegen die FahrerIn drückt und diese Zentripetalkraft sie somit auf einer Kreisbahn hält. Dabei ändert sich der Impuls der Person ständig. |
| | | |
− | Die Zentripetalkraft kann man also immer beobachten, die Zentrifugalkraft nur im sich drehenden System! | + | Die Zentripetalkraft kann man also immer beobachten, die Zentrifugalkraft nur im sich drehenden System! (Niemand hat das besser gezeigt als Stanley Kubrik in "[https://www.youtube.com/watch?v=1wJQ5UrAsIY 2001 Odysse im Weltraum]".) |
| | | |
− | Das sieht man auch bei dieser Animation: Ein Mann sitzt an einem sich drehenden Tisch und hält einen Ball fest. (Nach dem Film "frames of reference" des "The Physical Science Study Comittee".) | + | Das sieht man auch bei dieser Animation: Ein Mann sitzt an einem sich drehenden Tisch und hält einen Ball fest. |
| | | |
| + | (Nach dem Lehrfilm [https://archive.org/details/frames_of_reference Frames of Reference] des "Physical Science Study Committee", MIT, 1960 (ab 17:03)) |
| | | |
− | | + | {{#widget:Iframe |
− | | + | |url=https://www.geogebra.org/material/iframe/id/huD8JyQz/width/798/height/514/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false |
− | | + | |width=532 |
− | <ggb_applet width="526" height="341" version="3.2" ggbBase64="UEsDBBQACAAIAAwHbT8AAAAAAAAAAAAAAAAzAAAANzliNmEzODNjNTQ2NDI1NzMxNGM5ZTBiZGEzZDZkNzNcRHJlaHRpc2NoMzQ0cHgucG5nlFz3W1NL100hBEJXCCJVuQjSld6LggiCtEDooUsVpCg9dAUpVwWU0Cz0FnqHAFKkqkDoTQSkSZPevhPv+w98eR5+yZwzs2fP2muvPTPhha7OPRrEVQQIBKK5r3FXHwQCo0l/FOTAN0jXn8ogkA/L/bsqhs8m1tPhjYwje10St77MjqmAGZJmVNabbIzxNY9sRO6/bBq98vFF093LH+6/7JxhHZML+4DF8ukbMt41VNZNrN9tme09J+4K7/LRcZw820wbXA508P372W9oCfhdtyxck4b7f3wmVcfx1u0FpxP/ct87hnl7eXlpbcwEbAoVO5pUn366/7qe7oooJpNDwd9baT7icv3jpj3iNKuU+1ST01DOtFm163iTSYXDdIPvxsRZ9aT75NPV4fyAX1UHU14JVg+kpKRqEhSP89oWns74OVZ5DSrUzFeNWjZMsz5u/FdhiwAdz06xTGX3HbMeR5q5/lvccn5sgnUh5mjjinzWiOPxcr/fWnh2MI03bDbjFIAu073TmK0Cv4mU4HBm09Xz7dHGz05/vn54vrdaWDpQPfWkV1U3j2WmAFVYFHSyb7I8kF5BIznGNflsIa6iX2o2Lai8uHqCP+xpNLtv9+/ahfj1F7wZY33gtaUlo+WN/NwM/uKHb0XnN7SE6+y8QUt2XBMlFnKMztcEqeRnvIe0K4prZmQng082KkosGhwaNqrNqk9+N9yb9Rm1oJLbqDQwp4t5OpGn93F/8e3T2aCDneCk6amp1evm3KflgmZHScaWfsd9YoMv+SvVYpF5RNWuePaKOMkJvknXiv5yt5ppyUm/5fQKhf0x7kmX0qbyoINpKbk5LLQcSicvOhlycVYRtD/OOwm4kAp4Q3veuOUY5TvtMxr3eyh3UG//TP3llXnm6f7+4n2zluCzZJECYmeC/E73RshhO6eNuU+6D/Emfn0438CwCPyWpYcR/7tmNnhcBc7+hj1wq5WFXuHHc+7ydjolebk/X+9wuzb4rCVvlPcKj0exuktHLz+UWXyToKN49NOg+eL8RGyveVB+96VVILC6E49V6iQD/3y791jh4nS3AmVsUfW10mkIUkakZZe1w7mW36+e9p389idh7m4+ZIg7Qf72cVkXB+tZ3sf4mEm/5oCD37dcQYlSM88WZPKsuNjePCE2PN28o3j2Z4jp2Syd0ulXkWZgrTeqrdujpj1HUMb2AqWNtz3iTMAECb6veeahPNohcy+uw3K6OEMCfb/f57VvOZneLJ89369hKIcInnzwpuShz82GFnktD0RWu006XJxthlSQhtNtWXV3d/dpA55sOVsAwCAQCeumV/aBqHNRijLRHvY/Dn7N7tV3axzAyNtIhxB1DTCBI+jPt1t3lR8kjwmmm0dQakxDyifdG9xCrwhvBa+XdZV/ec2buWE8AywCcbKD2eqUbk7DUgD0z16MtwChdjkjoPOZwCpj7QdL8Dolb1ri2flBS8KA7DWQbB1WIIa59tJ1EN7uKsiZi9XQNfQAUSoTfvB7tuVip/VMy8PLC4i0X1/fU1VZPVqarT2YCXDUL/1Z9UpIeSqJVujNWmnI2dov5WQP0DyYUXBAdnJlDtJNYMqDPGL7Wh7XRzbXnxUhBqxZ+4vLvBlzs6+AqL9t/bhxW/3PcPPREm7hXjzb0aRKOHn62Md7CZfveF18zlJ9uA4A64VKKAcD1+HV/qc/SuyoQcYgSm86mZ+J+tFIfhSWR5CLUD6w+9kKLOjMtNjj6UHo2UZDNm9op/bV/XylVX4wG3Jhf0Gcmppy/gSA17Fususly9DpF97MqUazGnd2KNfBp4MM65Kn0z7G6jmgbT2bbHB12dGgcphRsWm/isVtLOjK9/uR19WqLl3i6uSHFV4RnAcXYigZtmTzjeMjX0diY5gwej25Gf7OxArHwXs+A1aB25Eh74F1XawCwi27bYEz+HB+OTP4eKVnEOAPTWMLnxFN14ANgIM+1GTkKLSbvSiWfDwj74v5N7jjlQqZHTVeZ7NZFapMrwHBWCaY8nRq8r59I4hHUSfrCN+mfN4P+SlP+GCjV8mGGxNW5s0JaKeRkrdIH13dG7VaNj3UXgCYRIKg8+724qsEpXPpgKV3jjfO90pD0q8QpK/xdZpgX4oLpJ69/HxdO8YHo0nNmHsnth4iP9hsRwNS5XpxVa0Mos/I72SCZUpE4HPTnmgaflBG0n+MWvmp/xy0qJma0kYmv9T4JnurS+n8Fk4x6FgZXgREh4kbgAymzp0WABYKUN0TssMgynXdiM8P9F5a1Hu/ULanlI5N4H4AM1am8mDJVwsCY+GnrstILA+j8ksmAr9hFn2rU256cjrgJoZKPnP9OldqJBOVoQkEHa9dlHJAtcnugjxdeRjSQ8KK1NEDk+R0sUdfs1ovTpeVAjIDd740SY3bvZ5RsT6gXZUT3vaYaWoP+EOruxkEJKN9xZP1ioBMH6KJp9/eiPHB7/EKx02AHp9u3eMM8lbzp7kH8NYePYAR/gn2p1PvTcHscFq2Me68bjPh2rmwMXO4PvjurWCEBthBr8wBUjSHMESZJvrsQ33X4ZiVOdWO75957yqbo8IpsdKYkW4hKjSj4BzPXeUYpCiTuYlxPRK7KC/DOUdrNw7vjjq7YInf+yKznHb5zmU79i0TaeNICcYB0PdTSpDXsOTmC6+BNG4CXQitVUnD73pj9mdzoVLxbDI71R4bph40AHYXEn2AQHSvExuQtq0DpddyvDHpvcfh9/O8BaAVhn8IotgcrA0sBsK8rc1Fpgt+gyFH+w0oilBAjdOsy/LQjHzXIFn55sZY/loEPgKOFRyE2pL/AzJog6QxaxEK0tAcXhlYi/cv5j5HfZxYYsNJuEjCEyFGA0ln6NUElTVk/efX4T1xtxaBALOjYZVMGwKSTS07djZwt3847+wp1lWrpRBwZDJV/9n342vRbOUTSufbCY5QD/A8mwoTD/xRMf8bTdjdmBbnhjduegqdPozCHotX2KgIH8idfn80BfNx8TxQvgKqdc4KtcEDOKh93gIRH9DeswYLdEEnIEUDcOY/Qqcmq+ae53zP4hQNMqg+d7x8TjG1RzQTgVYWFpX3sN2+EebfFLnmNx/JrP7Uy6swPNkoVRZAABzaCCqF9Lv6n4CZ+gPAeXnkWngGcz+dQahBJDVjQBUWNqbMoHtpSO2dfj09vkKHDUn44GoCLwkTORmyg3/gJxS/EQEbXYMM9EueofpY+T7I+g3wu3YkZgduLFdkGg9uw9vLujMeTdV6GgHZ77CLgXF/b7/e/5qHVE09zVgm+Vgc6Jl4BbiIBk6R4Wuhm3RcQc9DltUXxoip/hg7cJsrxp/GI8HTSLkgzbgNKggWWE3qiqCgsMhCgwWyiFjYADtAdL4zVv3+yR3i5X1R5IfUCCsK/IpjVYnSFWK2TajvLbtEQFs4M/wZNffqP6NFS9XIugPkY91g2eTfdP+F8hwjgUkuQjda/72f+3sc/zAj3t8ycdGPka/M8A0/Rq0VYtwG5l8PE5AspBVlFLRHhOZp95en60mnW6VlggRgsauV1tBICul7N/eOgizXAiUjKYkWT6ev3EAH7Y1QAXpBsmzx3WbLxXnTnWjas7pZeyC19VkCbWO9Qd/UmN1UM/i+fhcX5Lvz41PYh7nX8Gv2cHzpXMEDaL4CrrPjFT0Y9A8r6BEE3QbFMu3xZ5XH16PgzKIOGkKaZndsTCDGw6I9SGPeK/RkwakLVMZes53W2rSPs0WrVlHuC3jIuqlLcVJx7Y8Y2FzASnbKwPBe8FpxzWkOAAAtdfB6r0jLqSoXDKMXfNUh5ipKcERV0oJZPNvSkyj0fOMWelRDmJz6kxMaIhj/QWGtqEKzzIScUzca9PY79XKgiTGNSYEjGEPUW1BOpOVThWLp9/ixE963VXyDRavKHMEyMMEeJsKlWAuvfolxxUUg7cpzmS9bHU8DVNxVZNUSvDwLaCZsAT0XKssXpO1umAfL/fEaWXDTfFG/9GaEiXE08+pbUTJE8ktwG0QZSUCUS3/lkdQ6VMbCPoAY4TmpmlHmFhm86r2KIOTzS6wdSZPOuAME06d0H+QnPxOyCaX+f7I+FgK5k6G8sLjaNHRjUOkiUNKuOzHuzB2Yv+3+58sP01R+38BuEIvNQnWut0H1s4zelVu+e6KtQIeX5EXxI/e+8AnbFCsbCXd/MCelqTybcXcvuy/CGraV3s+3p6yj2ZF34CAPQMK9WNUP53AdKCTuzhVs+HkkuUiLelqCk+OFSZohrWr+R6yIg2qncHBNXd3IrYbtTtZBzKfknPYb7vkTECQ+SWVIsdRDFWETiRDMArGcbAfnod/wehjqMatcJmQACp2n+8OjkWudGoIZ7SaOuGKU8ktmEMRYmfetZlXOtjHrVQ0VZ4X+bG2wFhuy+4MNpfYWL/3AICCfjYzXhx4qxbGbTzc8VQptHLXZV3aibsEWxAtQjVXa9tZP8268q+l3z7+DoR2TgaceRlCBiqP6IQY9HJbP5iNZQshMczsF2L1SLP2dAqntKHmy/CkZEhlay5yaoTJtUP/HHRbFqf0GpX7KVZiq9tAkSJTpDVoqO70yLPsI+9wm1geAWbL9eHyKhe+4F59C3CzvQdJhHqOTZYVSmBi8fN8P15ZUz3gd+8PH2/dbq/qUoVo1zBREpezksICVSPMquomFoglU5noNjeohV9ISNPkgKh0Wu1k3mVzAOKnV3oJZGBjJ1HvyEdN+JIOZnlp9Fccq9fud3Gbj65w/bFz3dG4WJNCWVH7J5B8a0BzXhxul0Pyo1rm6kT1zOKAkrIXdEK85aNIukxTU5d2nslupLI+sXjmEZGEZ71VBiEBsyAuL1P/6cIUD9DnPmFzIg42cZYtDfNKT0ZVDvDhGe6HIT5nJcPEqT46OMBhZg92jD8WZsVcEnx0rEGr9emAF/ExYFDwl7v3Ev2bpkAdybvTKdSpjRL+SpxRfP08+Xae3SDBYrqtmn3B0m6iKm8nOe0WplfUhlJvdEIQU/TcHpsxEi8eqfYFYLQ4WvHw/LFDw6lCAhSxPiwOqsdheoONmScEVWRRZEFkY88IrsIk5ESWI3KoPA1wevj8gtym/NRhyLgZB1r7HoO6gRKu2h36lB0cUwFw4NAy+7tRaYF0m9zfKiW6Td43vXd0s1AVzV1Fcpg+H4cUv9AoQDCDTZAKK3Uz5Aapa40L1xQeOUI6eS1/zf2MNc0E4/nH52omg4idV2MUgfmiRAIlTHYC6bmNvLpwOUiYDMqqCv1HOTMkZfk/xZRhm6DejGCbQIwGRxGq+JzMUxDrmCZShU481p1XfQ0xky4e/RRbwBIIiUFmsez3PhTE0IJgCKK9NOFBYrjdsY73Hq1U8KC6mK8/72ia0D2ZMhR74RoJ2l2t34jUcUDVcBFx6BCPoT2WDfhny8LspPn2kJKVIyTbyuSvUwV60yh0sYNx3uft7nfoN6B2L4hiUThE595iN6PodDiFr2G34r7w7TC52SbAi9Scm6KUO9BCtYCTjJ/8Nc9vVu2b0GCDuzQExZ2ZRNmoZIJTjtPd7+mRr8nGLQgWU2lBcDqbrehvOV+3KjhnK8fGW2INNMOZRhZX0a/Ewvr8+1cOv/OWSmX0+mDxVJ2rKZE5zQOA92FAaYZ5uJj6aBC20EQmzQ4z12BRVj/nK/muLQM889OhY+fUjSEG7t784fuLnl9d0IYBWbbZ+0BLVfem6hgo3V0d8upEQtx1swvCbKcqMxVvr1sT1vmxhvfI06HKbzC02pI+mL1grS4tPeWCXMVjlCDL64wFM7/4PfXz13fdnrn4mYKOqCRNqw52vigNUdCAjIT+Ow+jB76FrZ/PRnMfayyTS6BEolX8df73gkVtFvyRsjvyn6+1m0BUFZSbCkgqxHpsKn9ZfTnkHbuVXC01+X0n9FJUkmJNsPcy8FgEFCYQzdgfPNcqQJ350ihcIIHRihkLJk7ItTEYKnM0hrhzmxf5MGJgfsd1x/PumJAk6KhbpeobY7CtF6Q4dEElI7sgpGMBYzxu3CFe91gKx+3umTHL2rMt3jEDLGtXQGCaCc9sd2SWNL5CXqXrYawXK8QsUeNC/C+8HBKBA90zkc1fCirAutqWSAcp++DDBI3yT/14PqT5uP4sHmP8OknGO5U9j4d1reP2HDbJ1+gRE0a4B/kmH86JydViMxJezRl4uA21UVodkOaRbWFdGVVkrLXlXbeWJu3L8DtalqEw9UMgDig3LiurNqaLQJ5jiNYtNCT1uzskAiDxZCPqBDR7TPqP2CgH78t82pYEp2oFLHEEC/RguAiLPl2XhNV+/pJLvE5PuHHarJD/DipgvqeYGM/BHYD7Mi52FWybgU8os8xftBcRC2UoQR6lK049G2jnKGP0yNiXtIc0K2PdxW5gBeETVrOSwkL3DnklwjZGpZb28N35PbqC/mJa0e+BNrrCPxCt3dV4dUWFMspzkrKBAqn0xKngU98Twe/OPPBAQUIa3yX79uU6ulcsQw7r1pKQR+VzPHFbLf+7MxFvij4/hzcVW9aDeh8pX8WdaPVPGJl3m/T1RtcZgvgvkgy+P5QEFh1lO8xpgyRPAZtMKY2wD+qvexFTpVm2PMWb4WYK7i836X3eXShdFVX//tNx4CAWVf3q9Yi4xEZMd1YF4VB2uNbCsweRXYLnBqVVgCTMstNydS42g+KHoOum/VizSU963vPzEq3BD0vPH59rGP9+1BrkYLFeZ0PnLbGPoX29k60xrBEMlYEUwtwKP4u+ot9dK60p8dmxkRHa8TCAotsWCr5DlouWxnIygbEcTmMtQ0Q7IpR2S1CqBwvdw4D20wbGjhcalyjSRYCj5aeyaTj0Rb91+qu7tVRgnad0WUSu/8um1ju0w4/aDbEdKvL5/2PcEbHGepYBB2S7U9cvrVFBBP+KuxGPmfhdWViTfeIog5EeZNHerq6TqysNW8TO3KOzMKG1AcRG3SzC2yhqcdJPRDja2VUuYe75W2nK+af50blWmzN29akzVy2ePJMXU/ZfASeRXxvS0dr3PK08Z8vrNqvn8UuuTmG93x35ZDRLE6JWAMifIsJe7n7hfVQYNY6+dbKflrC6JPZpT5dDd4FQ/PlrPK6rk7lVF7QYsgo1WR+pVkWlSmfOnu4MXzj1vbo4eTwPxfQKePKxfK1kLDeuHFqGeZQ9wQlGNJrFLSaqSkc6Wlq5X6dSyncWZsfZZYARyCyIx/D4q64MzWFCmDPvWWzg7wIQwIV2OqvCtTGaXFlXCI0pMc/asDGrYLYHQ6GSLOmveHZDjPvsNhNoZdnovB+fu/68gBPUtVQSDYw4YhRoaPBxxtc83YyJnv0KYGBA25INS86XSmL9odd5Rpbk+5/NG5tNurHX5OtTD57w6XKc/yOdJ9iqxYLQnq2CgiLESAI4uD06lxAPcO2JspZCDm/Zop4GeksaL3P/dsKnepR53dW+suGYG0YcoALvgRvWfMcmGpEqJ3DRudNp1AKYpIokLk9yY+3E27Bd5HVYuOE7e3Z1g/2UNKypBhRXdNiWkdZplP5AwTz7A5zv68cB3Can1qHJIkXKBU8Oiv3mpZdNhHa3MT3pSYnCr/CovBN7fqJltvigoLIFgysjBWH2gzK36+I4s3wFUZa/GJNBtWpvjTAyrhthNVufrBqB63h3yL5NJoz7DnoPRWeQeSc3Zeo80R8ut4T7P5l2HFJ3mkWDJh/kTlyL26xrZxhjx+uWmIr6BJJXjXLG3OduyPFZm63j7Y+gNqWHR74g7trEx+E/7b6dKTYYoUGv5MRZvG8dqE160aH6B+Gun5r1AyMAxObU3liHP9PCfnZOYcfFt5elGiMuf3NuhyOQesm5WaUxNrglZ/qukVSOf4q13bHgAmeP+e6sSS3ujVo7BhWE5kd/GTsVFhn3pO76cpZZwXsOFEQtMGdfCyFnvonB2gnyvldUw4juaYtUQIabypYTQMQF27yKBDsHiIWcwLv53eV1J9VBPjtn4FPFIBXXyE2y0bav/JV5hH/3Xi9VZ5tFWfotJnq4t5Ff6RFZmChRALtfM3n2ouhY2vOA7w7syUnPLRM62MGoQcjN5fdDPBWkep6wlV61fOyAyiuJuFfxn0ek4qfioXhRrb0U8EpP7lRX+3yzcm/aI8320yrumagb8BqXIciTeL0s7FJfSiWp9vX2hX7HPhuX8egmPZToBCzC+L85MzH2wq0kzca3SVx1N1S/OSqDl0pWXFDFPHB23B7PN9JLkB27jfTTH1QF6k/5/Cl/QulETw0oNQTyUDN1D+NDp5LBq1WqVAQ0BM1cYCKKIibxEZoSNU4KAtNbRPFQChYESSoQl7Zp0iBGeEeMWnaKKcHIlNmd46WDXSKJ5A5E8jkZVXkXnP4spFrYPmISNyXekHtevlTI33e5O1q995Vfiypvkv8/UQoZX1uyofcFaKAwurYiRsFgCEweyk4wNuPrtq7hQkqHprQRVYgH6TObKU0J93YgDaecrSuwOwNgfn+tcpxrraSMDScbVaJYJU+D9NInxOZq5TuCwmFiEvrIWVq1uopUB8gQx2iNbs6MKTRph1IitAZ6TwOyCtNJNB1rQa9WZzXARi19LRlQbAE44g/fHHe8RLt3QTU3eqHsoV7+uHL4kU4cnggthrgU2e/XeyUTvaiMqtERVKB/CbFmgyoIFM/S2UL50CjNhwvOIf3OE9i7+qIxKHx/DvmDmWtbxuTUcbqXk/+eX1XH631HOTzY5z6OVTq/RijFh5JC81x6girS7E9buv09pfF+hX+b0nGsvD21WmZZLqIFlXTpkug56wp/hlut3H+yS5JKqh0nITJHBxFbhE+JxUl+sEROMeMFxSzYFI0ztesvF2eOc5iPYbKTxCJB57PdTWk7tD291sV2mQrvUu9ukKhNppfEG6BrhAX5cMn8f1M2yyzgj18vKhIv/nJ9Q8K5fMq6v3NNGTuFBKg9GwC7br5QgIkKjtUi+8fOFX89oFI1rXivxxtdfYufdz/02qyfdleTP/gxN2ptUh83GAVDtK2nanxj7osbD74DgymQkTMgUfr8PlvhU5dNQ124u8Ug5sWobhbuf5RGKqvR89zMnJ2aIH03oQQffkAAyL7txtZjw405jle/8eoXxEqoPlKtGKvVRru+LF1wuxEWMenDZNzyoQxw892dqZvwFSGdF+8FSACpuNxyvFtpyFKXrGcFqmCnGqo+wVYlVgDaBVI83pj9MAht16G/JE4QfabpR9VR6aXFVYvsDLDKuD0CLaMTyvOJ5nFnx7o3bnZ5/2G5tAZks0KyFFSCqd//mdJibp+oh7XkAtCPy9qrVCBOU1G7dhDBJVJkvRhWBZhXTxv24iQllFu3FXVLfnuwB4QbIcL6uJjCB0gdNE4wiTQ8tzwWxPI2tivx8A6/AHAIltTa8zQkZCgHCm0+zcWZCZTNNAQktW21UKz9TbWOzx3S45RxRkdeK3rCIJ/bjyL45INE8OEi1U0VOncKpEy8jtipfx8lc/OFZDlZbAVbUj8wrquhDJuZT4514hAZwpnhQihLozMlzqle4Yb2MgVvddenpJ2CccsrLN8wH//DYMeh6Jcmj4xaN81XlsjXzdQiQnAWk3RBjiffwqH//UidGgNXHfq1iQh7NNIXEDPVhG+8jho5L/PJNJNl72yRKkXdmuGBg1ufOuhHKAoTygTWsSzQtOwJcCSt413S0hGM+Yl8BgL4eTqfIlw3baNwduLDVREbCQc83nJjtBAwb+Yle2rnB95ncrvJrRA+WwF1xRuvTmZwYN52bCUPxfLiTVPhoZa4S+0SBK6jQcohWHLeSKDVUdMaNd7ftaoyXrta8e75mddEzE3yyIXY6AOgdewCJDQrK8JSYJj4hzSzwP0JeBRYmhGq3WWF/hAnOJBE+9uqVxGuqHM3hTs2Nbv5JhmwGFHLYb6j5Jw1CY60xZz60sa5xh98DUAboMpvSnmB8R9vKr+s4bOAYUA//zVq4DUBy0H1tVZPgJ9yE5Xw+NOxQY2IdduLACNntfq/hhxWtPNC8hoOPVeZahVCseLqeVt0eSSUya7RDV7YszLhbHeg/YWE50h5MGNJhwZUbc2cxQ9OJBahfI4XG+4AQsJh7+hFYJ9IZoKIyO8S/KjQ6zgvCibFdSNgFSSpXWUTvf5skT8g3c4OaT1amwvFrUpmAbuuwgplA2+UJS9n62bvW8yueRWHacNCncErXbWQAbYzCcr+iC6/GcIDLAJ4RX1Ra3sPPQ7gUnm3A0HJ+vCbypdzV7T+sbzQdzNCJdoMIENpW5W3VLAPr+iSb7iwma4hN2afH37hnfH9PmZZBi7TLFmJ1SoleVM5SCaha1aHUJZ+XTZLprFfRLTa8ehmIKn5ilIigfDZmmflqniufq+Vy8rnhTo9EsvOPG4h3C3y2ylhYHmlDy5s43hkAcfkxA2fzAL0PozkUJp00OpkCNPJlQHatCE6reDg31gqTH56M+/h52Ezk0ElHYHIl+1qlZJwArcYjM8GAsYI9+V277NXhge/O82+R7ve9zIZuVgrgKH2DxRg/tVtv2CU4/fu2UYV+FWvARygwaoPwGScfL+gXIKFyQHSUrwPabieUHBjxW0bQ/jhcpHYOsmNFhdVnF19NBCsbWZgSjDSmv3ORtUo8Mz3W7V/zDmttdMIX62tfw/F3DS8bT/fQWlmg91JpF/pxLVrt1jBje9pfg5qjjI6zHmkQ7NnsxXkK6Xh58ugv+bt9/3Q/ITH6vuINrk8vBBbVKpDoR69Ubiook3mva5QOgwVQdYbvenXuvIaPGTblTA7ZCDm5SghV2synMoegBI09+nH03/h9cBlJzKxGJYW34W/ghV3md+yRW83zsox5Z1uHCwmvPyySMnBcsv14j7FV0F5Vy/leKTfF0TYUnFolUNr4JN+JSt4wFpVUZChMn81vLGSSbLioby9caDNkI5i0d7o8QpdXZI4pMBQQSHRjcre3Bq/5sZtVqxcPF9qUQgq0B/XfM5s5/+tSuZKDO/fY7Zd6vDFSOTXl/D5o5wuv59FMwGa6z3L6U0irKlYDrPytCLWuq20uF6Mp8wGrqonCop5h3ZKSFB94aQqwhmbj75pmZpWvY+XxOe12zIw7eKjAeqWM08TbyELGIh8gT5w9o8mMdBnK1krZbF+8kJlt9RpUWJYi0RmqbDIiZ7VimA8WASJ7W3Bgli4WI1TwFfH1Ju2RYCTE9ZlyR0NxeVWH7fd31N9p8eI3UuFjjWzGVKiAtMb5Wl+k2YhZ4uQ7NzcidubhHZsND3S+UYcVk4Peesqol/yP0mjO4MPhr0/ylp9mAYNV6X1U7xjOWoiXK+l955jBwkt/twNCB1Zll5BsAHWDbsq5xRbXwtASVsk0nN27MX65mt/4H1CNHY2wdBfOphJfpjvO3aU1L/5O3Jr3XoJ2mAzN4/VLj8N/yHT4x6q1UQVsNj3d//UxYcB/NT/3r+SbJh1uCVmFnO2NAyJCDRwJo8dGwor047HRsCLZalcaE5CWe7GDhkY7hVGH6dtxWlFWzv61jsHY6RzdKoPQSXpsXMXEv6aSYm0Fo97i79ogkl4E2gQUEStU3H0UsYC8ktxnqGDb+ZLlABA9pfNPM3Fm7HiXkjqHszu0Mnb8MA1QmJCpDYrl61dRUy476xeF4bHzNbVcLssn5V5OQG4jTMiPNepHJPkk3t/OwWiPOMleGCPM0w1ktz84NxmRG+PgAmM7svEGgg/R0gsvxcoTwvrTZHaXg0fr6kaeBJxs1CzsALWp6VGMQMlbdbexLCJi5c1QWHQ55fDPqkjd4d2SdUjoSBQVGVrODFJaRrhsNzRf6DdX5YlqCuEQdFMAp9dgXeSqvC0b1TffEYXwH6v1u1cHu6MMYpQzvbY7mB1Fmv58LzRJlvi2xynz5NNsBMmlMyEXZ/5nJweZaoGiyp8SmR9XDmVpdOTc0lHOXrF3lQyFua7qJ0E+ODwXovkm1ImBWfQ7YOSa0BPD/MXL9vAxeUsqNG5UgJCT1LgeESW57ywHQbniRqMObOjvzR+0XAT5XpwdHFB7TGc9a/rYAMwTTKV0ajXw9tYCIHtbgo/3Jx/TcSGqOQp7yAp+JCOKfvIsmxEQ5X755k9YbTQWPvn3lSXNPYZzjsULmdWMJLMUCcK0sOm5bLaeOEZXWZqXcR0TxzTHl79nvdw6hmQ+Lm3a73FvOduXauNEp3EsAcXiTj3U3d2nozOB08o0U9zpu0KKpf+KYOreZ+qkD3aF+2aECc/jsNTUiZsaxbl+5X4y5b4gUJeO4/OqyPqhtIlGQ8H8UUa8nz0lUzC+glHj3cS1GknDLH67q9udtySnPNplmM09Wru9BmRyGUYPmk9+e9UCwuva4tUUiwZfC2Fx24VjQij0IngEZZxkmM5VGDZVwGxmMthUrIdZuzSGB4NyoS+zZVvGrLAV6SZh+cV6iTrKj+QI3y/FQpo30IWCEr1LTTlQxHfR0AwDisigQyhflATCe8dnjbiB28rwrCT6LacvS6XhzCzIXMuLd+dawznrtztZtQhaVGlj73OQeKaclFuJSVp1EGN7FopKV+MHRiawlfVyo2s5PAjUP5Od+uB6zMC2G627qVaoG0Jt7McCxEX2j+TGuo1Sfx2T4r1Qk4B7CRwKQcQik4tlEoW2Y2gSUkQYEQHwFp6ioSGFfSBB9j7vgihQmez9XOb5Mzn13UjGnjrbMlTgpnUYp5fhvKsjATo5ljLq+UBFJP0M9Y5c+uSm2kvbBcYqh5+MHSj0Q1TFXqWtFsvl4zv3BYKd7qboVz+L0y8HkNGyvlpYysFWshC1L9ty8rsheBcAkDrVFqDQ2+fgUcvuiN6Z1tzIPeqT47VSKhUfNdH8o5IxO8tGsQ3zS3YSPVpYJl0ZYVG7L30kJeTWySj5xMEsS1SCABuWNLSeNci3Zns9Kjo4NiC3yRY0avG0f3/MNuHXg63uXYKRRw33N+lk2SpXaQLySIeqf2wKTdwbfyi3Ie4Qe1Zp1RKc27I7IGdxcrDZYoOYwE8/1pSqmaAYJQz6tFVbtO/EzIVX+BVvtdMp2ZW2nPt3FsGv8mU5VPZz4FclSuGzUQgyNKgGSBYOw8qg5w2bzQHEpoCDvNP92ZCLX9P1PrGTEo+viBo6JkWtQKy4Hpz/BvLyq42KQUUWtc90SqdbvwwRcjvd3BWzp0tS49ei2S7NQr86FzwZiPZaCAzNRZWsvBGtRoY+sdkFxVp5f1OLBJjaHvzhUAuch/XtxZtPB9PRmkjV2EtTY+6AlSXlLYWeTeJp0V33XiGZCgnONf3vxHjlVvM+Xv8M4k6sFGP8Gfe8PMEt+lXUN4ha1MsnDxiXAKjjzlaNW2I2vfpuddl1cQS4emc9+/U+2uHnEuTumxKbKjaoMnR22ney2Jva8t7ATcTOsMHDOK1VQdGwmA3SXYQIQd3lvbQE2R3XThD+Qeznn6Tz5n5Qa5l0l5Zw3aetVjgnI0RXrJFiItT6rMZ6/B/BkJUsAIBqWHsyvS2B8BConNecLB3GsT81SeFwLnw8I+D3OzNqnscaBf4LKDGjFydXNWOvJvnDXvI9mHt6vJJ7jy8jcOeLZ+P5ZvBBw/rnyw9f8jN2f/95Lx9iRoixUVuEWBOOJmfPJTnC8Z1Hy5mZ6UBUj487Zlr4B/6uW1afeyKvSIddnnrTnJ02WykmsNFXwd3oikjJ+bkkBkzTLfLanag3IJdAnS268AvhQxFSxurlQr/eIhxbT8JaT+AXwvfKkOWarvvr4+Ok+3ik+w7Z8fxm7qIiGzeDdAhCSPkXmm/jeWW/Phr4KAvm57+s/CNPB0Nhp1flPPPRSK8J9MoDMqlXzwYl7FzNQjwwQeClu8hm1unegiWc3+5CM3yV1WQXwrSZF2Ts6cdC4evtVfOnAfvr72jYpOmzkBB5qg57w3JlScGWG970p8/nCk2/+t97i5u8Te9Cs3bBfMXv7lZXeEJvbIUDlSjohGj2WC0p71qpU76KWSj/41QXs7UkH5tcEBKmWXFOur4lsRY6ZOKYzgT+cmkLovNGUJM568dnY8qbIOJCgpIiN0/MmY7M4hsKZ8vYjzahhcOFjLfwOQY0Y14ZBL0sQ2EX0zvEga5scWGfiJufCMuNS6kuH0w3ZltCCiwF+CZAQ+PWMrcP3Vob/LsJ/W7jFLBT8UOj1lKEIh8ljBFJXoTEnx3vxXIZHhtaKowatvKnjDiwUOg2Ji/JOBt6GrQyUCDweQ9VyV1Tjsk+gZh0M7y/3//mJ6SZsjxuha2aBytTFem1n5pkYSn1QAED2trBcbpaWiwT7xzcet6yRxAcuV96Dioc2G22XAQnX+bohrltOYHzSiMWTazHicE1JQ5AZaArzSVfwhw4O/dQuMC0mBpf2rijaRjXY4CaydMeqylxc/Z3oRVhcrOWYzfiQ3c8BPNwoZ4p9wdgXkA1MqCv8izY8Duyc85JAieQR2y1P+ThbxKkfzzPs6R8uBX9fqwwXV29PWhj+X5sWO4tdNKNRqAoqQAqYkcoObWuNKbZkprz0axJawDZ7PVDTWQ5ralUze22pC+7YVJUmns7eDaDD6vmK6Y8tQWv10ibHxGX8lGabpq8Mn24Q926itWp77bYjjKNC9lfWeE2BlbbBnOpo41AasDCCvTxBKYrYrAjNWaLNxbP5iM92fE7/vEd558t719MOOWma7KQXVW+tmUs+e9HWLF6gJM4M23W0S6L/DOP/e0uTjGzdch8Kt9E2BfJK4zEBMQM1+EOyVs9FGM2x6iDOegTVVAsbOydmKOD1JTHHdcBrVZ+lCaqXPw0acN/ADlGbuibxz+ZZKO2zFKGAvFl88MTh3VhbyGC1iBwMg8BlrX+dCU7JXnfGA0a6W1u7ALD2ejvQO2ub8lojFx/nBwKT0v53nKYdpXS4V7KOIPDcQVoIFBxjsZQr0T9XyNKfIePbBsHda82KTQXDUoEyFvED/P+2Svo0e2PbZ15Ohuk92XGZ9Ti27sXRFnPLoCkxANOt7sEDm0TFJDpPhm57evJZu4v5iAefJqyRc8LNV9MLDUN89Ev+jEKeKLTfHzit2WxPcFYU+eUIN1uO4FEGQInbNuK4H8w/dQRKDpQkjafnxc9nm3e9tpqXtX9yK2zd+lwgauo9blovN8XnhQ7Bf8/3RwAK5DuyXZnhJz72dMI8psLRFA9yAErihW1MJ1eOTkLgL/FmUmg9fInunBRXTUTiYQf/ES/79SQopaL8xNXoJYa580M1A/TWOWTSu26E0WdP+wXvD5WxpgRv5rEgMLGi4IVTrBUHTe7TSWopCm5sxhXrnAnF4RSfvbwtL8E0khbJ9uXWce3X+/WK1VOH1UE0sz4zy+vBQKJlJdviKZrST76mvUWDBLP9Ft6V2RcavktM+B33dvyzuUrkq5o9WLyNFohy9eEsgJL0XyLif3gZ4GeW3vm/fV1qBZnC5lDcGvmB6aWWnaT3XAXBNfcB8Z/1l5cKmTkAl3tiG4jK6fm4spMGhDGUFzRy85D3Yb8jCB/Q0cl6PT7siVBojLZNisKLKpFiHmyeMhnHDV96XUQwOsLmeo8UCGk6TjUpA2iBSqgeu0m+oIWv2VpFr2ICCsKJ/a7UbZJgKzj5roi3DiNUpyL+x7paOULCctTMIOUU6cMT+FhhEQ3AkM2QjcpObJt0U928lkcOVviC4Ls6ht60OBCEfRxVs8l0Y8RSkCe0bxQRi4mOE5UOm2jY8feVdUmLk4osQc+lUP0XVtbMlJjlXJPi1xzbmX5V+LLP5SGcuiUfzB+QjEpPP3ubVCIYMGbLmnlu/9+UA8VHgTr7HeECmKrUBVjwvgesIg1FKsYdPynI8qFBeQi1zrMICktSEfXqx/VupwZ8lsJKVVTAJE8LWHVK5Q4fHr/HvE2HF085Kc+8EtLpOmNwp+vd8a1paYZ5RK6yWvXy3tteJm29W3yQ853M215h6lEGhMjXS4ZvP/1zHYJ9qNK/GyFumLAy7sgCKg7bk33qfqYkLt+U6Ic3TGf5gVqoG3OWNxk29vOj4UrzMHyG7zaqX9mtyYz0n7WCKPM9K9BTvxtyr0Twfya3M2HP2IZag8BcYJT2Bs28DS/6BVpSdtbGeJV9et5c3M7ELScYhX8DraHVDDPRQx4GVUJU9YmU+J3I6hjRrcqMCHBQIlgzF/t8cTlvL6ujqXWNGAhTkqSVTHw0OIyr85pc71sRQ9DuMT9vWwdMWUqj8U/X3eDpRPG4WrH/VKzgr7R07ep0UyJL0a5Qfu9HsLUwk42tvt+BmBAKzppyQm0JTxaAL2JBkRT+zswXkvhH91pbHGMMRNeS7bhQx82TqZCjeAg5tB3WI2OehIUcCFtNz31ZO5qsLwSZcJk5GLsPFwex7nz6f5rhMm7frDZR1BsmBAZAXnFjfklcmA2TMqju76un7PaLazliwaHTbxKK1Ljz1OCLGbIlZrRFVR0Hpgb4dUQK++U0FFft/jZsj3BMXxOBGq8VymHYcdTUaIH3PS3LiJHksxb60f8gEk/8yZRBI48S/FqIBLTAdVFdNCrxIEE2R/K1jyRloD20KCpCbTssuKQFvNRyNd4DgVZgSgKV4oXuMXOub260hsPM9aVxGvqHY0syDx8qFe3BubEJDoVnoXOeHV2iT1IMtcJfrDoERUVz6mkGN8gtVwznP4gHNCosjqd6BKX0BCArLYD5gN7fIQeaWdhQoO2Z/h+nTr0vb3ldPxnhZn/xhrMZmr1zfgVk0MGcdqt40Fmq8BthQ7dMOaYjLoGkQ8pv3G3bDsDj4BskLkHyOliwe5jvGmNLGz0x5axf0hLsWCXz+pwftknjn49m+BFj1enSmd/hvLe9Lh9VI+LWTYocVHZTVvFBIosSpoyVT55FfAR65UBLug78omBFd4hFutEkLc98XGmIsu83aJCJn4P7LoNN0AuR1Nh7gxVrOtavxVUvjlaxbV/P+8uU12PfcT9K8U5tbUyXar6Zvvhc/ekMdOr1OZQw5syz+zQwQ1ZDKY3Mb3fXCwug81KZk5SEWMwwx9Xrw4EyT0pYi9397n2gPA5gvPfnYosFgo2PO0YP4SomrzoslJUBdTON347q0JxZCGqGAvdeSS8COp7C2SWGpNTG+yGlvRmWjMyk6syQrTE4foekNGi4a5VEElKpge057g5JSY79kr3KkgJ39jW4Q/8aeOVq+i8Ywjw0LoNRDJyHbslQ1t5kL/8pV5oCEvTEp3p4JVL5GjOs4ezA0Z0wIrS75a9tdgyRM8Og9eMBARPOYhUM0oCOsVNfP89wpOFqbAzIsshaxE4FJG/O1ddpIrqHQm7kDksKmDs8wXgmUKPEWBcp1WULeIsPRlRWavua63S5SuiJzbAOG0Jq1gfQjITvmNxHSi+HxdSMgLO6L36SIouMeiJ9Y4FaYhssrFXMULJHY08z7gvquqFLveMeLsWXyGKWE1xvoISwWY0WO3NbPdWYw/AEwtglzZodOReaKxcRzWpkR0rUYZudHw21QFeq36Axq4ez0tt6b56tQgMTPwH5mJQs0TWInp49XzNp/Abu1nH3i7Ersso26AXvIa10ERUv6lHnZqfhT9dPt+bKHOX0C5LTm7FRZxcFPPs3XkCTK+QAZ9/oXCoWV8KWC6h3aEflSiz2mJxaXXkbwdYVO3cHRwrwNe2wy6eTfa1B10iX/6a3cDI5GqUNnK4rF9aYjPtfHddQpAVRuhkMKMy6QJsxRbrYYWCmwfbd8geTj4pdMqavobdK1QTWvpBMpyewP9AlPeQMLd3ZrxhZLToPOzSPpfCsmjqAQNGJb9Dlm0j2kpHe65lz1RblyRG28soGp5S6e9DWg9JTGymp9HWcnjNH6sas7r549dzxsajdF9I9vakmxMbTkSmiqew02JTm6VCX+KFALxVR4H247feyR2XThULvoN27K1BzUPQU6lQEtpowK6tQM5upduSLjKrk60zhYVUyYZokJpYmASDLbaqTpk3jWj3/HW2BlO8u5JJq+JAmFixn0E0ZxoWCZjUZMMmrMhDbp14ItyNgQU3zcW0O2Ygk41PRGbcnNr2HFtrqM5RPgXGJEv6sEkxQTefuVwsNggJEUos+RhLKHtvkgZzgwlK2MbC6u5FdPGeiMwWm7pN1XpCBLlrohyVdNot3DrpWAgQmWCNxa3moBN1wkCqRKE6qPphpqJ9A/Iw8dqd8nyD3OQz05cAXbFKe2BO2/OXBuUFpkIe/noq6tB3JTrUbG+MxEEVj1vOfBNuGuT00Wagcj9athwt4ShqgGJZlBUQJian4XSK3aT9Q5JC2k4rOPEyXjodfwmwZ8bDuhKYovNwnmtbBKV9E/I178OBNs5gycDDrWyfx4GMik8LPUTOP9+cq/6sjYpsi6s+J5Wv7AXlv2AVzXfTOQcBuXUpSRPrT2YuY67kQGiTQY0uWyRGr3HgOtJIfQ9kcsxq1ZVEzkjxfaE4dm6WQnQsjs7XZ14KVAuGVz/IxU1egq7LbTZW+G2da328qTlEV9VJY+l+slpYauNVmfYeoQolFE/tk/YS7kTTxr1//cQc3gy1+Zh3lH2l+h3yNH+uUAYzXdDfFtd08X3VcL7r7m5pDsj3a5aK/dqj9qP2m1IYljIpt4nKwy74r56RcWJLyAXwoozX0vfT9dftH8oMCMX1hq4f54ylgZTkw4DvSHuc89Fq3GnOiH3VZ9IjXMktR0H4bxsIr3knjV3xQsi6LmOI4Paiw7L/9O49+EUfE4CBeH7090tw8s11T3TNKnaDSeuy6F8gQgU1ky2rptPJ3bWulsSFz+Kor3kDiF9DYKhylrZXWo19+GuF7hN+Xz2VIOFMtghjf4EYfR9u0Op2H7L/Z46bRDf1tGMeNDPUsdNpCPfY6VZ74gXLKRxAHpHJtZPGT7wltq+vZH3JiKc7ivWYt6/cpEjwJykifWC9P67nhk++Aq3vtJrBOPHicrUkIr+aqkYv1xB2QLHmInttCtkbs+qTOccptPEfdYUzrV9ulfJRrRUSxoRcPU3zsE3wBCxmx/MEyB2G6lDUdMDWB9u0gwK27gMzBKZulxnh4ll/ua24AFOFDeI5fECyDCx3cJXMUTN6bS9g27rCHbXx0/Tm1NePPdt/GcrFgxrZ8DDf1N0dBVuvb+UV3qCGkLoij6a4O7YcdtE3UmiGmtd8hr0UebkXjPzb1IUpkwqr8SDUo2Tk6U/xc68BzwA5Q56odOjLcd2jkB9jTBesvrUpT74GTH7A9k44J+AF4OtR6mDUVn4JhuRJP9l6ddhFE5RYXIC1kDtk12rojiUR30uQr+uWkiyAJLt59Rvhc/lzYkDm+NtPIIuUHPB9AQZHvmkRr0JOGvQ2aOzmvP/UogkZMAHXWA8xOsreccAIYGrLlAyn9MkPa8NIQ5vBL8Snvnqx/WcpNp39lAdeZIYCT0oejmoFkKWQhhaMoIhJ3Fj7a+ok/KLZXJnkbpdn1MiAQSDBoQi+FFK7rtPDf53tm7G2/f6v9Rto4bckWPY+D2NfAV5+Fcmpyxt8d3EHYBIHIFSKb2HZAcqIMK8ruZepGEQ6631zZgoIQTpA4ZwAMgFU/vFewoBDfyrqd+92GdCnpiSgdHRaK54cAYqbIwWgFTWTIICvxsfKbCueWFJZ0A2E7948kCibfViX5vJ+M/fl6I/Xc7RUNWo1LGIO3oiMpF49XhKBqMddTWo6mAkoe2FJyymKUTbUEo9zepW85t+XoSB38vP1wx9HbxZkf8lxubYftB0YxK8RnooC0p90d7+PtCU/Vs432sQQaOgRHTn5wezRsbfg05O1k82WQfWXVxhwkZ/teucjYKSf7aXSb/Yqnh8ujImLjFZlOdEO5+ikm+6jtw63F7j/9Po9JuPkmLKer/6FdP9BO28pLIBqPvndQIE+q+39lt9Gd4XwIcMZggEH18mmoCHo88MeJ6+lvhcIJOHJ4zeFC7fMX7+3XsF7FL4Kc2MOfLK/wMjyH95/7P3a/G+1yC6+g0lgW/K/Zv56hhYNlCjVqFuDj+Pf3R/62zDgU9CnkHvz9/QUkgnfH05Hodj73/deQm9XFqyN8ST8H7daCTveS/lf7NW0Xmwg/sKT97C9NVfuP9ieFs6NktCJGIuKVH0P/8j9P/Cfm2ztKtydA1BCpAs2wa4bJrSSQnXXPJahNcELiBUmfCE5/lwSJ3eQCAwApPBf4e0SK0t/7Tembn649VjhP5wvPI52Kc//C60zp624sIeC/GNhJJtGwawld97XBvIIju7rCNd0hK6ntrY8gf1vGhlLUj8QRDdP0ElIa7T0X2NjRq8fhqTRu6PKVd9nLQ6GKbH8XnH6z3U/L4ddmLQwG5cB895AzAc3Kx6O/tfiLaRI3Xs5nd5d68PHtU9zmcncKJKrit9jgyQEDzwANioJO7tfm/mUWrGS7d1fSUkDcX3/q2iWs7HpcpubJ5NgotuV5MdMm26k7gagkuaxrG1P1HgjJl9BNhZIsen/POunozTTFNKsKXXPpQ8LJT2oA6l+RqNIE5xXDpcPJ7jdJ+xf2bH+z7kNg2SzxPy56n/kGiTpDvYqblE0MN5c+0/qIPuOfVpxMkxTyZ/CLHg89nwB8kYb4zc5Lp866kRG0t2qF5qCyYmAfP8KvlGQ2el65A/xW5PSNGx4rfXrK6qRiyqtcCFtpr/9ccHkeM3DAfVjAE+ZhByVBd5K4bCaKe0+FSFGtW4aKa5/f95BWlYJED6mZYD2vMuD/aoMDZIDr9YtvBnj28ocC5lyfAuGk7ySDnLdrhikbrbdYkojj52B+OJCkKHJDQ5anskmf3k0kkIdbtXeDo3tfOk97aYIXvN4L0mx1tTXZIlOxQpFj94lJK+ZDhsSjBYchRlTDNocW4QO+QFsr5K5huODB75DSL/s5caEIrIEog+AQhfiSywysYev5+l9LJeaDaxwHYVw3rbTOLXscVvoShgkp2VDTx+oh9pjD5nBBXDYRSSAMVO39bEyiygaVkmhZ0bp5/PRnOodpAsPajxy9j1vyqWdSTppfGu+fUEGdbBc0kfae6BgGsgFir5MaU8bsiBAWWyefLvHaZ8Zcu5HuqgonBRgu/PzC9Qq+Ggx6Wx002iDf7+D2cpcLC/KuE3p5OWqUTxJPyh9eMKaSOIkkyTxHh+S5mlBDuU+TLCGNGf+VRZtkL+sOGjJ7zQ+ha1ZeTq3OlJsupH+dMZE5jB/Xh2XJvbS44WM0vXhHqAsdibDwGmuGlbHS7LhA3f7peybaO2WtHGSQgVOGOOSgerzsxPHzKB9E0mAWJzPajsWs+ZOAB3o5gTe551Xf8x8urB6ek0GWFl7clejB3vB/zwLAkQkqiHf77P5VusmTUJLofBfiCRT4iW7TrRkfZiu76bp1GRDxn4cl4bReZEyxS1MQNRgYzFo7SjNXUvgAQiI6/O7PipdQPgIGT8nvIQodYVsuC8ali2Tc+LEbqb9TTqQakMbbsHoiI4ByfDOfjen9mqtrXuk6J2AoD9iLhiT1w4BYT01H+a1ZHA2TdLhRiAzUYOhh1TNSRf1085hMdM3pv4okN6wZ8FHquZDeNV4zxmmgMR99AMf03E7SH1r4W+rRSsyRYlsVvzwofz5qpEBtsF6q5m8BEZKZiyQIptSwzI/vtpRdo9CGRaY9Zet8VnG2EsiDPQkr2g1vBYIbE5oszkpkm56UWhckzo8XmV0CKam6B13eCVNgrM6lPgg6O61o4sjkfHinIIxKzKliZ8d9WE+BGGtdPPHER3C9aUWTfUjfAQkSvDccEzybxEVBZITCqyO3QjaAIjw/jyYagratvA+dnKcVIIZiWGoYujJQl72gUNHXGhrR+zUtOLCWF9pmsH+BhCYSPsi24b4uG2H92+F9h5yOWGa/5nI0N+3iXyE1GtlUuRWo+0Q917TsblPc0PUbxB/CQtUdJ+tu5NffG6p+kGHbXu539ZaoWkugcRz5IQJk8S6smDOQCbjUvdeOyMV9CbbafpcBcmHV8nGNsOVXO+5AlI3WaY7avGCafl1ZnNeOB1JzjmTCVZZ1njU1o+Qj5UwnMbPDSHV/tKFFj0eNlQmcUNw4Cm+fiRHVyV3TkRE89YVkuspwdWYgRD1LVy7s+00LmN3tbrv6TOmawG/GryEzN6e/tUalKDqRHkHxO/+T5YWrfUjCB6X21Q6VAktlm9jzEgEeYmW4SVFc1U0+ZSzGIYV1tIJCGFfp5tjP3TRoJO1OQHAWueAMczHrTt+GBUoPcnWDrKiNui6t/YW+fmaV+FeuqX10eu5SVhIQPD/2kFF6i63znrbrZve/b4DeKKKo3z+XrkqelbpMPoUE2MpurYN76OrywGRzl5jv9Ys10rTCoIizRPcAid+W10GxZoQhPNdyvgGnhKqWBT8vTkwVOp1A5SYjcWjEnefS+VqXzPYOBJEE2922B/deo/h1UlD6z9c9CjEMBsHrXjRXhHN+qR5sr/BmgKK3WscxSthGDC9PkJLfe9ea6fLSgSLQCxk0tZCw9Jv2UY1ccDSuTmIVpQPN3jw/rLJZhYvWo2enQKslM55WjFH+k8XCDVHhZPDhQTuqZwH7/QlL343bJZ7LnTac6u/7Pa2RPkocne1HkHrAK1UwaHgb3cw5fVwH3jcsWY2OCBinRAK5UabfEDuzQBEmkDaHrrlt/PzMLrrAGLHfOAvOOBzero7aLvWmWalsnwlUHnL3agOEAmrn2KatjtZQ/bPDmYzxQBh9Vj3HzWRr6cn+/9X0nXHs9l+7yTEiFFUorW9LVWzao8SvCiqDRJix16JUaUoFYq2VHlbq/aeQcReFdSoXXtTitaoVaq1fvH9Pf8/n9yf+77Pda7r5JzrmfVcib1+iJagfSyjY+ixdgr73OEcrccA/kthhc4UoPLzmzBzdixM9zP3671d6HA57P7r0t5g+oNzxofLvwS9+S5/ceh8P6n1357H4gqZbS9ok1bNdz8CmF/tnSEPA8XKfe61nu73XfoHSD25OliW5cNNSQb1yBt+pgpkSkT4jkRe4eNtOb6BFj0Gt7XW7FUDFuhgKUMyun1fhXsfqZ3JpMq6T9h1ShgGXY5831C5NJbYSrZ/+/mhyt6nrbz3D3vfqp0fb33PjZVQHPpK4Hu2Vend2nq27Wl4+JZbkcRut3RaL6d/8Jca36mW+pjLLUMttW4hsBQzuLOiGvyXm718fKihop0v9GJ4bqNW1zZcyDKXeJ5EFDt0i1jzApJLfIq591SXwBjoTmnUlydnk63n0LbAOe9uR4rSfYwkFKFOf40+itVL/J/ZxbKSPu/FpbUCHlwNP6rs5u3L8F9+vRUjv/Bqgwn6knQzD5HubWh18XsxRG0ltiJN+w0UzKUa0ha09vUrdwhH0J9mRHyqRboMFxdDa/p4+0rIcAWSWgxSSxQDTbD7Dl4O1W6905d4naWy8kY6J6rle0406XLOejrz/FfhFqlPInrIxqsNLHXT62fDehcLaAn8CQ/LP0ldPBUKO1qOlhw8P9sJcb737KjfmpIXtygJsX+Bkqfo1FKDEdFACzq8uHDVjbRJnbahYjHG1bU1kaPuw0xahUO6vgroP3Rq/xjVQ/ogGHFLKaUKvOAw9dskm+cBfgOykw7yC/72yHxKuve59AVxDDnbtFnx2aJyCJXyNrd2t9UnwNCZXu30X6Yf6ly/t3k05KKrQQHOWgy7WOZTB4UKNQVLCiVmJhbNZEasQrNdz2Sluh2hxCrnoUHrkLPDoodAwaW8jo1ILo+ec8r26uyer6tdvP5KxVuVvj7NlyBaD7Jg38lPsuaM9V4IWO8cBmFQCqEI0InKyVZV/q/yGeYp9Rc0Md9n63YEDjb//d8g/QLJG5l6sZbq+ZAJfzYnE8DQZ/QKQDd8ShsPeO9FPpy0yTxb4bt4xWMtc3Bxsnih3fOu3HfUQN7R1MoXxchDl1O0wCDZfOfkIPOCGyWpl7SaYGp9/TdVvQOXsJN+cqj91bvod7lDbnQYBiEaZcwU0bZp/nGfuFoVxre+sWFA5/NMWudlL8Th7g27/U/Zfp9MDWgIY6J79kYkAJ/e+6kNqKklawdQ2JT/2SyuTqsnBxPAiAm9dSfBaNVX2DxeXADcwsx/1TpuA1xLhiYfcGY8O/+zrh9nZTmcyEV0KtAwsbmu9vw0wzY4gLY01QKK7U+W8r7Ofxi9u6Iodww4sJcUE5dtEsZDqRDoPJZsMdf2q/rg5zAiJTLckSlkKIZGEGZLjwEKVaLJUYH5P2LZPl62Twt/HVTeeSM1eWlkYngGslqK/iv4Br+xGqyomvtJhg3rzW8hRIa9m6Z7TrcgTfiZffItWvLjLl90qgVK7LrJM/jd0GWQPm+i6L/wbm7Iu3ixsVISDUCMnzoIzjqcgwFbMqCRYnjwyMY3UG043f9Mctpo+fp5A79nb1GUWnQs2GyBKrlKLW4tQJWq2LI3sywqR5wKw6D78usv4jkC7fGBo+kp5Wwf9EQeDoT97gXCs9PwNb4M99tDlkJp7fSgImxwkOlyhTCCXQyf/1qSDCHB3skc0EvGJXZmUdHcGD5dVyiaatr52ERtFi/WffMTHAu7c5CBh/XcvSlfTZdTUttAct37QMm+YWVS8BDb3c0w+arsm/LydYIMU6sdV1pcd9UiDz3d/sFM8xX9p6p1C5qlGTMSVPgiGgG4Q10UTosXHQhKxDrzLVc8QfP4jhlOs+pw//e/zhGy0D0GaPSIVs2l3pUa1K/Hr2SnBPAtZP6mriVzCl/NXZ0i8903srE1HGlIFMIwQA/mkl8vvSK6DsiY7Kyt1Ybzp4YzTNB9tJmaKGzsADOACI7AbCC78AsQ4GY2kEzzy2XmIC2mpfd1m4gBw52cQGB15CibG9mwGpB6hr+LAZMufVBu93tt10x2BZkvvPei0l+uS2NYMpEDVYRQ7rZIOFMv45RRc42/gTNsfXhGReU8/yV4bq5k+p0u+969sEW+05cbRlUMXC/yAfRxN/ig19h4+RngLyCIWJmvYPScExWLKqDrW7PbdzH9t+q3rldakvv2pvjA+i6AepA+j/4LGEDcw7jxO8C4ALiRstK8285QeYPQD6m9aR7dJ2UboLlrsPV7x8vXx+Kv7YvBtouHVtNL0knVOel8GHH2qSte2UqhYpu93IAnFKiAsZA+Af9hocYXPcjqfacgckcrmA0GqAa8Cw6V/kCtkA1eEsFc7V5NBlgpVhWh+Uv7qQf1ZVnwYt5mSm1rhXal9MQIB3Mcswr/cUPbpDexsWGcsedc5rgirJUzaObdFqCUkSgns0vBzk8Kt6RGFs9+PjXEvRMB97M/E1QBHL9qY2PG8HwH2fATgFQKFaNZoKxee8CDUT5+EGopKgqKDK1VGornE+3Z502j3enwBsilu+DTiFSaD19e4VNdtJMaB0w90dum/5qieq05XhCuWt0xPlBGE84Q1VfQVjFoSBqnQXddUEkul38yAMI2WPCsO9RPjErJ0KTH4Od5DsVXIcnLKmvJAJQiUWVNFpAQByjvp+Lh4KgPFdVP+y1A3faniMjYvcqtaBrVCZjOJ2DEMd00F8FKm6L4Q41pDw9HZKXuOkfsJu3i7eMbbc43qyZhMA6inD2GIo4qOWx8rcxEdqBaEP7QjJRdYVOgCY8RhGo4nDZM5BjkBczW9t5Tum0aOTmiGGmewKktQIWKoGb/7dgElyBDvhkNUJL3/Tcdbg+JbtRYgQ9v1/uIzVJiTeGreryelKOl0aAB0qjRL8hhlcWPU10X1nPwtXfBJxQs7r75XAOUZ1j8Sm6aqjcY7PbJajycNrIkI4IKTYb8QpTJfPXO0nsF9KXHht6MQvGYQ6iIVrY0S4zI8QZBsOhh7wkAnWa//xyeOCXRHUS543rXwfqcxIjqZnSiAUNqD8sxCl1u36pjSvDw6INPZR37jwMirMJsrp623ORxzWbH8WJuL4MsQ3+cn+xkXnpWTWe/5E05+zvZ+pZcgweH4aHCIHMy3ZN8MUMCIPHsdcwIMF+g9kk8UBNerE4vAsk9LlEira0Lmw+Ce2bm0PCHE6B1LatpQfqpf5AMsHLbhOhjvcqr7iu7x4X/24guTVrbs/W2K1fOHQCdPQ7120H2NYBExYYiyaxk0YEn2iY8XmTgZavbu8u+KVaSsJkGuOgRnl7FsCQAAiOXEBlO9jmX65p5acfynLPvopYRGKf0/HaQWMBgiVlWSok5zlQbuNP37A4nlj6SDqLYYRnQdtJ2cbV2ezkbIF83c10Jrapy7iuFvSP7+suMxt18LxDekaSe1f5uShgBLsdDwRSQPOkSjP2gw4DIYQy9BUDeh8PHMIB4UYMnYyKadqG/VE+2jJWY9yyR4nGraDzsfo45sAQjHvHAclLEITS5e+vWaimzJPSIJiUlpbAEP0BPhVG7Y//QfyOUONemCfTwqOEietfjdlFhOzE5ZQ8+Q4gyqR8uIHhgWwezstisZ+sZ6ed8k/N8o2/f0cKzne8EKp0lBm5UKjS/aK1BqRoghLHnO7r3PesF6d7vOelZj6Zt0oD8osqsdzfPDYcfMqP9pN7oVbSfHPWS3i1OAWrxGolxMTCuioNdKKuD8ChTdc9HwgmmLvCZmGySdv4SQb7I1xu/HInTt6/S2j3/B2sj7z+5DI+QFH+QrGW7u9QWsZ7xTEKDiQX0aKlx0vqZI4WF6ny+dGL7Dmfryfm3+Ab+nWAuAJ6DDM3XdtxTKXmaZOX3uXYhcBP73kDus5LfVrLv92EBjcQVttHVa4x0S9fw13tEVgARIj0zMnfuJbaPf5fiLyW92kDYT8x1XhOxuC8tGpWN13/haZTWs194G81T7uHhC//CCaiDfHzm/3MfMLFOhVZDEaBQvUiAAJC7pnGzvEn7DmlM6SNlMxL4RQX7lqgGcjtZzN/6Hn992R1cN+NWin3BJNczU4tLrfGYVwqkqJ6qAblZMV4OxNXN1Zon/tmB9NeHq28h1aVtvE1SF/Lb6Gdi15EErmMSc96flSx+eVQtjNrM0YaaDKNGU41LvlBjPR2jiDnPNGv72BoKjHoPX3YUqfEpPfleDFSwuXd+vOLdIypyFbMsbEquPxhU1uFAb9tnOKsdFf541M0BrWQ3B5CtmvwGLpuL6SbWBlKdL/ukLWvdJyU8Fv1mcbn/CD3Aj3QCyyKX3ESuD4xHVD0US2K+e4QKvebbWJwC8xKkIcSXFWY+b0TGN70rbrWv1Xobdibnf7H0GzycAUu0cI0EUvhRqkU5GJ92SpEQoE8aAIdQZjGGiXS/mduN7GL6+NcWqL5zmYPXA8sAn5PtuthsQDtgs6zOeiJP9z023Xfi86UXDkErGnZp+Wdfj5884ATof9Dgj9kAV7+B3egATLGpAurxCdtb+o3JSosApTjTl9dLTKQw+RHZdsW9WsLhzC0CmpHs+26fYHwhXOd47cuuA0+w1wJnUOvSIU+Rh4dHAwzp/usf7lrGzdjRm7QuZPphoD5Ab32UWXmLBciABRszoGvd1bb72Lz8fowIuk+THCfqvVcIz8/+mr2gYVpWgiTukrW5cOw2+tdACmz/AFL0wFQZKtofQMgY/hUpkQ8Hq75FzoOpajSJzRnMSlmMb0LLnHTjNrSAuTO3+62QhGOxu+I99XSbue2kblq+IC8MokG0weiSRguTKXw73fteUROX6/NS3StFAOHe97zP1WEcDrhk+J2E0bFFu2jxHDdw+SfTVDkcZ1sjhUd2C3o5Kp8Q1e7oyFJpDQJ7QA8BfUazPwCaH9y6qAY/XJOCC3YAh0US3kwCnWMUqHqimFbwHKh+pWLLy+pedsjF+VUqZCYDokXhuNY2OJ9oKQU4cgZ29V0OYc2tuV8W2FzPXt/KOO6mrE0eeg18p3MYYBCURX+MJ6AqxfLNvdugLCvNkQ8JFGGm4Ofwn8BwgUEq3Zh2DKcjE5fcm2zgcnmqR6NrkPgO7bVQYTJ1DpmdNk5hs8gdTo95XcemtKRIWaUkJFmNlreKul6MnssLW4zhF9Vh8hEb22aSn9s905dsGfuxEqtmfQtfow7YHBpxl8dO3WkNnaMs0FM9oEzBd2Os1dJ3HCUNmPzZtKOq44rGX40DmRabFBsDYasiuyATDSDet0+87s0SdbkwcknPP8usyknqXK8QNqv7eTkYnx05C3qAvD1o35AlWp9jTQ/dvZbPkJaPCS1eJnJzmU6F2n+vUSCuSnWLTVSl77UzSM796riiFk8u+eKteq82NXUWtE0h12/66K8KnfJR0SM8gVlgDRAsJSp3ORAbWno2RWMJFMLU2IaalJl3PhTj7tlPZhZvSyhoRgrqGVWiikdVODABMcvV3DrZwAg2Ooae/CBxSzPn1LVzyAm7/85y/KLpS7Usoed19Q0N4tXzFCzMP6TgdnDf8L8ZNMlj6vnJpZZRKC/HVP7S7UtTSWQZPgEpulRCxC+VqJgu9X4EcNbQH4853OIVoX0SVbkMh9aD/rUkgt8W2XS6oTgEIoqXCQ58xG/H3Em/aXui9mgw3YxRzhkBQlyybmNmloUfg0/+xqysrcmFNFGwWW/zkeqfb2/jAdTl6rqwMSmwmGGu288qJLfJUNWDlTJho07LUOEfaD8WYGyoJBW9v6RRnb8n4BaLmwm1r2q2nbfsV6BIVIKTqn7aJIVylABZXQkJ9lJRDxxZXteA0G+LKVEv7q2dfWkYWrgZ2HK8HP1l/vKsGabWKXf2Fe+9wH71PVZPJoOzMICIv/mwOdmNqzwYkYe/Ss6xVvbdYA8V0Rkgpe8CT3KtgQTtYKDmWF680A9jBUx1OgJUhhHlcCljA7eDCCU+QNNEvSGjtKTJnPAE9ewgc8izWG7FfSXgUQSH9W5qz8BAWU568NF0H1gLNmkTfDj+vqJhLWVPJtewvF6pGHufH1y+BHmg22r3+jGqMHG54luVXicIhRSdxUuyrF3jTo2j5nF7og2UTfkFgB3qvRVxG52QHI6z6HTFSRAAjP5gvaXi2598H7zNX/EWwzOlTdvEOX7+E34gAlgOoehkY9orvEFVLRlfOSV2niakWvDUea90oQBtfBfH3faSFFovCdDFf+PuNKxj0ntSKl7XW7vgtsnmYN8sSw+my8OzcbiYkdIF48AEuAnCMTUtGPGxmTagwqTTbeY6ufe+qLZNpQM/YMP4Rt2rXLdhvF2JXHmUj1ht5ZUTyJRC97Iv/DpRdN2ks8OwzYF3q+X3gg+iLeTvaKYTdZbNX4rUPxfsI2kHTP69VKVcgwNl5VN4INXyXYDtOCUKnihvJOf+phv+ULvp0eTE5UnaSxM3zOi8tgmT2aPil7+yOxtVcFE7S70oJ4Frht7JQYfmUcBkFZ84KNGG2q2Jc1R7qwMD8lhx1oDZUVMRduKMuPFTS/YMW+VKw9B33firvr2beKFepFYTsFSDCvlt+VqKIWxXZICBLHJUcodqSZJ5T9yrXNgC0hVuf3b7VBH7u671DDdEucc/ZZ8dbbW0y55/znmu1vHyyu/UsQGcWZV7RZNEI3ZrqrK7dX5neytO88pnufmgKmyugZwE8ZP8rN3ByOMDcSqZOkjcXGDpdwtclW+tbNa8BMDv5bbPaE0eFlhxl556gf0jqCyrbxMg1lAKiEELk6mCStK0BgAbtW7M4gbhRcV1sqHZBSnAAk4QA1aWPrfg3MnGuu+jyqNXcMXa2tEHmhHX6zH7IQxfTxmKfM7ZFdYuq4xMvCrJI69mK4jtkMN279TwA7fHlDwhS78zexPe+pkCBvPfyuoW3PZn3CtkA1Zi5FOC/qwmbdLwV2Tt3ILPeprL1zmyEnN1Yj+GL4s3UY83tkVa5Tydduloj+TypHapipGfvznrUGUgCpeL2Kyd9UzaJq4w55+iLYcr4wyUu6itUgOy1qH/sGBQC4h0QwDMBaRZjGYvS9tWEIR4Y245iiS1O6pZVzQ0oNcDFhiyRE4AWSUZQG9b7fA9swQD1sEGlnNhyEaP8bVwtM9sLW49fLKfGZ7Ow/5za/f6cqB/7HTd4vOTLQ5rf1u/oYx7zr83xt0HibYdRQHEGqqJAdz1y+Jt/MTFs/X0ujSv5dc+SrhhRff5WoNs3IlfxBGPsoOKxKVPhjEZZBLvjqywehq1Z4QaZsMao1Kdruddp92QsbexHpIyfPHpnqyo+EAA5EmpruRq8Uh4GKHgl4k4mvdARf9o3Tel0sR4EOGQOgnyHrurhzpkji/IR0qSJck5zfntsq9ARD/K5RimXCCQGRv20bjSHScrV2zR04xFChh3WwasJqzwPj/+6r71m4O8KV+ZamFQS0nuu7di1Y6mFpnVlneLcTM1AxPYepPsgD7Y9U0QFmJ6G61BDStX3qq2r7XHb0o0/WRL7UtpA9wpIHfiJMruMsbrux84o/YRZtQOMgA0UrASOXYrDkwkswmDLC2zEkTyl+R2x+JlUg7x6/iKdN3ElSxrKO8wnUQip0DBAxB/n/NqENTHJOgDge42ehNu+rCEk0r0Wos2E02vtJzHXP1wlvoLULF7ZxvnymUd+Jlzf7J35sbn5+d/1jOyl9ZM3l+a7kF5+UJO9xZrrqgtB7qPZ44StA4IqNQJsybmbf0NaD2EIKcCsKRnwLauMLMSrJ7SL83hkrB19/yGjpjvzJV+DysDS+iPv0TNJMUMiSSZdHhO2yRU4VO0rYFmy0V4lh6QFry0QC1u3OEVSIwfnENOyBfSqd6t2TMdj0OpinvdyoXX0E91BewpKjovlfTTI4u5h2dkZJZE16WGptU5OOUeZKf+PdwcMnMvq1n2teOtBJhErpWvPK1KtWCq/vz+VoWsy3DWNqjfD+2YgProMea/zVhf6zJ+1332o9VEpU8h3WUByzQU9TZQ8Cenfbl6A8jUrq7pZ6VFbXfGs3ghhU+/9TDuPN9L4HXbLMbPy9yu7ZqnrIks5wQCO8NEWUkpv+LQJY/R4v6hhXal+AQEfm1rBDmPNV6/1pu08l8AnPbaHVPeMl9AX4MZuPSJNBC5CSq9e3OkWmYVfFU7KzA58orxr8heu8ONcVHAXGFGYFR2w7M9q4XHfeLPNZsaxqkZhl/1/aYost2XvIHCXcfHe+WL1a7ZWpuJn2yqmNOVBq8+TQjshD6DYvKtn84H1xVZ/85iXLKGtpVMOxg7K2cZOKvHUZlqMOSpFzsB8IKw3u+3uSRYHGT/6rmagiQp2jOlweT99RyXUNFZeq77hyLSoflIqW7jwCSaO4DgMdn1iq1XzVg6dSS+hoWmmTD7BRfOiCBBuAgtRzPXRRJB3yxTd2l9khe/eHjIshDLLOpU4/gkK1UhFnUu0zlwF35UBYwoZ9DXZWNIVN6ek50NmLT6x+Hpov1viMg4KPGhyLgl6gyV8f4dKkLCIit1PbTYLjPlP7y/mP5ts1WSGztHrGEGnBVaWtxcRmVu4PYqEDWH+gqOJyh9RIMs3nZXymZypFtBrkwpkMS7XXyejQ7jmXjQ9TmY4j54gzZS1Nf70sDze2l5o5tK7AmFFmq0ls7PucXNB26WFfL5TdleNTVzTJjaeiNrqiktE9MiooJRrjWCll4Tw8dITf3jAPWBYsCm0DqTYnhat8otrVQRG2irSbApoDSlHEYCPBrwjxfUN1g1mALAQca3TdrBJp8hWX7v/q2t5BOgTvzkpJjh1CLI3N+wqwN4kP9g/Es+mjBWEtMNIfTeFXbijHdbFqGJDnRs5B5zbwk8tEvGrCaYvqXibPf9U/W/De0B9QRmFR1n3/2PX23JpGy9XTampSCgIhALLGUEFaPtKnu5h8MjA2xBpW6ykomo5jBxfsdf8RuNIPRqxr45lwhCS9xXQ7cT9GCp6E2ojDucx0LYyqgVIO4F/nQ5IPPEWlMOBFirb+Zbz3ftlD2VjyipnUWEoirkHplEeLKHgEnsvIX5oWGCKvhAR870ZW7HpD8822smL8RkpDyr39ONUKNcsnySmNZ0+0gBFa7MBJ4WFJDUudaSLmuy66D7Mi7jvTkqMhRPmGZDtPQGj+dFpOyD7+SGGRJTHOGdNbJfBQSoUk5lLnBvSwtWTA4y14FiUhYToZLT4P6WzndniBqZgR/olTO8yi5SHJyaAX4Anuy1I4HKSHRiDjjGRBMaKXQ7lXqL06W5WjjW69IRqGH760s+65/ZL3mjNr92B/DgBctpLe29N3MCUQuiGV0Yb67YcYRZvnsC/6xvIcQbCYeo4EoSnT44zrfLXCGmJHK9cnPzQJaxE0WwxV7Rvgn88SLjeBDT/WF7ZS35SlMAQzg9E8A0q98nnBa7BvA2xb+acXCVpjYizpxOIVdnmCXy3bLtgAQSHTWaXQwvHslwOQwk+1nD58DkOUFKhiUl6/SV8pMtNEhMABRPuEuPrSeDTA/pqM2ZEuYzvlgqSvdCSjinO9mySqQfLDm61ukWi3gwIOiZhOPx7YLMKRNBqH6Tq+wi5RCV7fsV7NUi117Yoa6FninQDAvx9j/b/wDIWWNeiYWA9apstNzGvjjapoJMP95xNQ+nM7HA1bBhOkYuay7GW5cNaB+E5NQQZH6yiAo/ccaXPxUkFzMAIUn5lioYvNk3k0XzlxkA8KHxPP6AJ2Az4GSBp6ufOVcggIQ3jUAjGossB6rAXqg6eEBlSXU+K6bIgh9i6b3E4A+U2CRD0aI80aEsRahyvhATcuzm633qRk6Iu05RfsInMezoP99gxN5/lu4hiOE0lm2NDePwVBlXo9Ss+AwAJM+ZdVEzwJdxYHawEyT5WN1EyiwrRR4rJ++A4P4vwt1aos2ks2Ga2QH6EJEOKrbGGe9/XI4Xvofp9MMzvEJ1ITzW50CNRZTYYCxDNWhkva4qv21HbcVgZ9SKl9lp+3NwDmCpH/kTXpL3MnPzNhnU9+R7RdRkHhmKgTbV4FEpiUoNACwr4boZv2hZ9TsK9yib0z5NUBCD4b2gUXSdgmS2f1gQxnWKlUdScQlJ7OJufn1RA7bKMW9E3MyOISU/br6eoXmFf5vSJ/baGHRDOZ/RljrlZzjbtxQf/WyQUiHyiYVxf9xgfkM9MtlCkHFaYrX3BPBQKbPezwHD0lfwmfl4iubanxsIJgso4b9Cn+T8r6C3j5LhDUS5f7NCaYwqm00VIi8XJWSG34zp5QWUn77S/WJHnbRMnMAVwU/uTxfw2LFWdw5ysV+3Fls0ta2lCtUeJ2G/cgy8w+u3gK6y54z0Kji3vVm5Ty8q2rY2JxKjP9rPIsGCDi13yq6RpZHJ5KhYuSbsiHkVttYCzGAXxIOr8Sy77hKVvRtL5uQZYmjB1NfYji5bXAnMFsSvr8NR+WNX8f8vOSjLo3pvsig++UvNtuWwkRZDXC8YidFXMuV9IypsIX1urfs7zLXkG1pvuiQoG9WUEkgzdb9T1pXkofs55xf7XZaxV0NuXlRx+cZbSy+uvCZSpzjAXKI8HQXjaCJLzRMLIoBjIppFP3B4XuK6JUBUAEQe+uMiZDkgaGKmq6080/cQVvz45cbW8sHe82oZ/0cRELorXh7qOOVLH5l34PoFYTir9DedOSVCHXbejbfHjf6B2d2Z6GAxF/FweX5tLn736DQ01D0hrVacjrjVrej27/t2rlN1AN8AnGFKgVfP5IcV5DrLe1RhkuWB615z5O6MoVMzDO3z4G3ZyAtL6XI+IhUJcOX4QKfzIKr18U+3v4XpVnJyomS9bb1OEcnE38ZFeHfySTbmT9ClFTw14dHVn2smmmIyhZ7U98Pp8OzMmHwnWV85j8KRn1O3A7jrfKN2ozXvoTZl8DCFqb0jvea6Sm1oQe2hzeg0I+CLNtfVFJfMGpdpFQvn+S6zjhouhxhO+f4UQtPDuYlyzVmC8fpbdd2njJBG/do/ianOszv1VrWzvE1O87+3E3m8hs+n1V9yJ/MEfVefVqcd2j7VGAchLGjVpxl7p1elNqC7nQ097QGzLMABX+7vszLit93ynX/E3vSd/ZOvxo1baQS4l1eKWwlDo92E/vUaM9RJ/59tr7rfyXbdRTRzGiBSkbUcyBjVuW+vDa31nFRtN5EoKsCLt8l6I/M3MtzmWnjmHTpo9ZxLCHXBFHH1Zhc7XuA44dDiS6KJmeidcKt2Ct8KNJgcMK/2yKhx1clOkWP9tNW6OmHhoOw3LzBrXzFf5XGylb5dZfObbtZj/kiCCcM/3+dXjkvKS9pDY1AQaOb1YVY2uC6EGMVAhU5VzxpK7LIZ9QqNqLSrhBGD1MIIGoLNngiivdrFqY/k8TIFE7GfXrEqpwVuFLcgKOBEjEs46IB53Xjig58tLsIY05KK7kGlWb2gcogAVd9ws2GTN488EnCNf4TMkmKUdF6BkOxb5kyTb7KsnqVrTzduyn9OkbNRc18gmYUT+ZvG5Sy0BZtGB5UT09RZZj2qcPRpShwWX/TKrxVFEko+vA27eaRHy6HPNMOCke0hM98hmlEd+cyIgW4HtjzE1+xUMEu232w9XZVcz7KraN7vNf01f9mU+/xFU0NC3+VIp0Jnj2th+kT6wv5uhzg1EUaNTGRgmINkg3I9anh63NzY4fmGD3udoQ75TqOVJ2HDThbYRFy9bhIhuNuPNQ8OJU/YlFpbijgM13+e8YHiSte8FyW4cHE40nTX18PUrlWhVFy87zRR30Mdeu6Cv6V/WytmGFQkbGLZclwCBjig/nuzmf9LymIpnyRQBSP40VitfnocE6+bZVtlRAqHIIj+U57kOAFNuUs/8aC/1+TrUjDSzoNbqhgy/seTDfaQZvBtwbNXB0EZCA3DLxDABA4dGoymJXF6SqJEv0PqYdWVAbyA2+Qco9cdOdZAgi+GIYj+BpEvKmlyKfyKeR04beBGGuAfERaXHHgZlTjuFmPWnHHa1C3d8zwnFA26dAy3ZcZfA6/JiETUm/y9OszHtwjcPGXdpWVZaIX3rEw7Z6Zf+geULT2tpWiGykeqf/I6mnY+ciknICrhcXyVY2moJ0YBFC0KIHrBwsv2UWj1aYYUAMuUSB7/EqSWy5MzZZPL720WdrpRi5E+C51vt1nWoG1ZPp31nJ4khx0maI0WYVMJkwoWTXtztmX492stEYVpuA2ykTCAWBDn+FlV2LJdPEi1+IkF0mL4QWjKQw77wveGtWEfr5ykT8G0j98L7976c3owFLs9XVX4v6Qk9/hbz8hfikRWmgs6GJC+rwOJcnnbuwJkfN4PK3BTknwjqqleYUwwHbDCi6FS/ZLzyfnFiw36hYTgQj/DCDn3yufIYhjpCxd1jxwhUxatDHicHmn4g2Sz4jspsd1k8kJ23TBvAvzw6MvzGY+uC531P0YN3V7zChcyE5bTYjQBHheW8Z6i+VG5zd5Wpgvvt/OSLk0S7Hdafltf0jADovoLmoSJS9WYfvmJoSHhd2xLCjoBSUZFsHfkT+dTQMbybhiNEblZm8fNqMltYwahyTma4EmG0+x7Kfv1zNQyhADK7jdeibOSF56uMfxA9hpo4J0ImCPaviDY3gj8w9Xlm1Fqyuc/kUpbtN9bS2WyOcMBJQx9ahDd+m+QW9S/oHxQzcLLYlMktMjdtaIBp0tMZ2m7nFWtrFt83nS5gwXoY/XEiZfMPIEux/8xF0644rUEyDlZb/kBpQ/5FBGCkboH15ytshx1H7w7A5SSMaiylJb87EYaUtS03rbfz2b1CI0x3Mwp+kaCvyv2Z8U4v9y62SAqkylKAJBy7HMLksbQEwgFpIigb8/+UuRSXapvvuVtXvw4QmUs29m+308veeyAJCnzINF+M3Dzkd4kYlI2TZORVeXv91zjsCjfS9vFm8/+/ijMtR8tfKT2/fOtTO6++0KC4weapp9VilEMpocOVFzqJngDVHlUX969IxjJNTaA8AvFyDcVL6j8BJluGFVaMBBSPJzXb5MfV4OogQsulDy8s5A0lFfQCCg9qI4bz3yRoW8VImzSNvu10ogImXVJNPMd8d2cwLllqgbzBlC0yPONp9WXIvr87MS9wRiPdc24nVLHydl7hZO8m5v4uKZlN4wQ+N04wh1VtuSW2lR7ILTtoq88xb6O0sazXaDwWvD8Opt75zCia5XaENiGwZy/79mPKjqinKYGwgDlltIrZPpg5rxyd/pXw1Zm0jmS+tjOf9k1OHZI9YSw2E/hFAM0jNdYkl7QXlmoMq2w9q4vApTuBwnXyaTrtmwbPQ2rIGOgErPiDqMPwKkRGOBszqplHUJoXi8bEip89Fcei0gJrqGeHk9ixHgDPKCEdu4NYp9xiVFRgET9jH+dUi2+pLwha/DZxsx+8srLiS7pyw89OJJpmLnr140f3YO+/O+deTjbik5F5W+3SNHOz3KZxkk5D1InQBHLpNof7pp0Gwj3L2KA2oCphWbUF4su3MCEZ0ZZqzWCaDAxlEK4ihkTLvoRGVMV6S7bP1HSamISEiNbFVhKm1wOCzrMqWBtXuCMpka3oSATz5kdzaeYm2RkDWIPaHBTocyPI+zZz4k7xR+YfhVq6a9QwCm4a8dSvo4Tu9IVE52L92j8UYBL/n7lUO+Aok1r6Zmx2DSjuHGfsP+s1hVLvaB3WVxG33IfpnRP4QCuBwVAkoGFtnM6zmCSAVL72ZJc3vQQUeku/zoON4bZJnxNiQE5cLELWFzo2OQuqEhNqehskx6oLc49fm2gJ7UmY6owcPWhtNTIOtYvMm1F5KObBS2E6b5WVcy76N8Lzyr+F00WiY5lHbGHO/FtuX+UHj0KNmwQ6Xqt/3V6HVvxjLO1+kY+hWdhcUIa1GaIYrLM4eHkGWu5//uuTe2eHLtQ7AtZrkR+i/3AQ9HtMZIEuO/PbI4EhOlbhCKWmYhaNckusGXFVf3AGVXIUb8H1dItgqpWP57/3az4M09RM1S4492vfcG/vuh4By9/eh0SvBRKewzkuCaQ5/0blmJUUXtdPMH52W6+tTFUFJrMrF9DNFDuwbtkMBDCSk+7Eeq5bA6ThLoJy4rWNZUbdfuWX4FQH0Me8zbZiJK5tdIClsS7dbNY5/RzJDYyUoPa5KyqHH1EybZyNTatz0P0z4XPuvx8ROsux3GgvIuBm2WmdxKixkTwlff2jAg/egqQlYNXiCBv6433Sp4jzHcZhlTqNlD66iZ6Jh8nUjjjiRNB88wfaqZZo7gKXwiLwcF6pT2j6tdBZaiyo0da09ejHG95T2n4W4W6PtZwX2H72HRZJG3QyF7y8j25OBrku/lOOWqloY8VKdaR3lg4QLJi4fjSpX3T4P5/Gv+W04dFiCXCCnRvUQtEy5lTE0CvWbDsVHJt/wifq3/q1WYHX8gYcmne97jVKl/3qPXjs9bFN09z3vc9202eTz+Tbqo6+LCzc7bwzD5Ri2xtZXWmICXF+gK0QqBGN6rQK/p+SarUQ5IITqNk/T4pxyySTWGIbMub7OIGGjQTKc/JPuQ5175A0lVzRoPwm11vg8HXTs1N1vZb/NNPfyoUvxJJXNqwNs1G/9nf339afSEhIUFHrGEmThj29YuJ+vn7H/+iPOuVlZWtRc7FysmidJphQqEJAn2K+XRoZD3jw3BhEQtk67VWLdloXtEekQf0yQaSj/fuTpLjWgxJdbzuQVwkpqH5/U4DP80exwkq5nnWeKMYOyD+gaG9o0Rb3521negYp290+IXYeOnOnpcvX7b6ws+qOWFFT8/72QkfzGiwXl67f2uNy5PG2hZ5erznoPbl3J6d4cFmTJ2KBWioYGleUImpqGanP46bCueV5TZ2bzL+Wa6X/VBLzbd1WTmZrreaHh86Nt0terziezknTyKP/JeHVa8Yz7AUTP2IfvTv+JS7ZfsD00+++LO0o8U/f/5IF1pvMpY7OV0npqenb85qamoGl5WVhXhROSsNe8N4oLfCoJ7uPMUj35L1EPpTpEV4sXoEZkuRtimpYcqTqSb1uMHTeueFSImBYkNeG8sjwH44vtc4Q+GbUvFPR1uqTPJ37xkJo95Ou0ojiaQQK0vLU0KJdSbGBW9X6eTkFOvyBP7w0aMQdZ5qlx7d22ppsmTaGpO6WMyvskfmhfeGJtERpYXDsofFnR6C14IF6Axaeic/gyD0+nxwwTuaHxj2Fbmp1qfkg+WAtS0tZ5nFxcUmC0n6+vp81y0H+u9iREVF9/aPj48TlO/cTtTBlN255tUTG9dp+xFJ2tk8Pk+J6miPQMiBNMbkuXWu3QplX4xW65gs4hovwcrcSPg48TKxA7Bfk9ap/tvVYu5+rsZq3+bm5pfV1dWkZhtTU1N7eWnpZ5bkLs3PRsW/oCggFBIBsfKjRl2d3JXGsIZlC5w3weXHpkViZt6zdH1tTFM4KLbCfa9IOO2tdzGSl7ApiKCZQ1B5ZajkbQuSjRhr6+qS7tKd+0X59gDcnRIFlJWU/jZaSuwYGbNxPl7+F6IhN7YsWewKKcFk9v3eBQrTO3ycEm83YWB1AWjli1kZJ3/EPVKaPk4Jso/ght2LG5VjcbhtIJo5ZPr35CT3w4cPo2dnZ55bNjinRNbZmZm/oY+tU1NTbUa/JcpNh80XIT73/kPF9+B9fCmNRyaJ6bZ15r6BUc3jnF4OvvH9p6x/s3dKz1Szd8I2j8N19CGsGN67v1t9N62N5dpOT093jirkpPteDQwMGLx9+9baVNh7PBEZw0Y0NwGqvjRuIF64vQszWNGt+IIpPdQYZi9G5ruipNcAL9kbrjQK8OeG5XfTlfv6+hricDikjU1IaXySBFrxzh2v+SuJfRkD/f28n7W1tYV+lIAtafTcXtkKJHCsfXSr1ArPpBZbmExblGd6UzMcJnm1jWPxV76Wa0Dj3XOCeprk4nbflcTZRHanvQju+w1s6M8/5C6Yf/EUEbPLyrbrhKPcxK5M9ItRmQizC92WIV9VpUarvvoDcFraD5Z4MQ6Ihuevt17BaJr+U8+ACb7HdhMfbPom4RaHTT+SinAaU7090i5mBO3bXjnJcwkIGd7++PHj92/fHC6WlsgS1+2djqYmRkbu6mK0El7C1Q+FgEl+d0XZheorxsoREriU6WCbno6kkkQntk2JP2TzHjgX/bFQS0kZuyglCA2LkUpfz2bn53Ehj6WruklBqmq6laaEqZER0u7Sb/VRDulxTLqMoS/H5EinBv94FqcRccbBMuV4p+mTZQ0rMIbaS4YM14IOFlsghY3EYBdbP378+by98MiFT1JMDE15veolaX5+furznLriQwNtBNMfpwbZhBQno97CyJ2rJAEw12PxtCygXExYy85OKAQmUBrB6XJhyJ1OETHjrEpKSjl7e3s7v4+OzDUuIihnjoz9cI9gxnjWMfW6oby83MbBmEOcejcbZJI6NhK/pgmc+P2sL7n2lKdBwL9m03Su3cvPT25mYYH3/l8+LBb7CeEo3xdpWFyVoHzxcntrC/teQtrI2Ni47XXWxQ1Mjdcrua9HcRATY9LjkbhbvKurgS6kxzjcQLpmrult4MmYuJqfPsMtBwbio3MwJkFdH3CoqAigPLpaD/8t18CE/R9QSwcImK6FCxlzAABSdQAAUEsDBBQACAAIAA0HbT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3dctvGFb5ungLDCw/VRPT+4W9sJSPJ9sQj1/JEbjqTNp2BwCWJCgQYAJQoPUHfojeZ6XUzeYPc5yH6JD27WID4ISiApCTGjTwWwcVisfjOOd+ePXsWevnVYupr1zyKvTA46uEB6mk8cMOhF4yPevNkdGj1vvrys5djHo75ZeRoozCaOslRjw5IT5TPvS8/+8PLeBLeaI4vq3zr8Zuj3sjxY97T4lnEnWE84TwplTvzhed7TnR7fvkP7ibx8kTayNtgNoe7JNEcytzp8J0XZ1+fixuOwiDRtNi749BpS5S9fC778pLPXd8bek4g7if7BpU07cYbJpOjnk6Mnjbh3nginoHaaWtuGEbDi9s44VNt8R2PQmgU2wOEKDVM9dvuabfqlGUMTIwYNdVveEzX8aEnhjXAVuEf3Ou28ZS8M7++4EkCYMeas+BLGMaRNyx9eRufhP6yaBZ6QXLqzJJ5JCVFVdFFcivuBlKMxDMeB2OfqzICQE64e3UZLi5S3Gja9MfbmbxEduhyfBr6YaRFcIGuQwX1eZl+yjqip3ktJOsgWUO1IRrNz2ObyBry8zL9lLV8L0i7pp4cZ0+NUXYbL9ZEATQuFCx/eN+55P5Rr6fNAy95l31JPPdKPSpOL3g/n16CZhf1Jm8T76rNl88rGvfyikcB91O9CkC283Aea9eOn91LdmTIXW8KX9MTChJHiOvP0IG0dMjHEc86ntpFCpg8i4q6WyuOEycC8cM9ErDs9NSyy1kXRQ9jKHZlpcRLxJN+x4Mk8mY8cXxAY6il30fzseNfRc4oEdabTEKQ7QcHTrhX2nvowtQJAq1/c3MziN3J3J9NbmPv6sa78gZDftDThk4CTfdE127C6Eoywke+SDTnMryGM688rn0AYKEbsZfcQXmgcdCQKXx1J9ow4hMeDHmgffSgfdmvyS8/+omsFGgnju9rIx4nA1Ay7gvBvnfEddDAG8+fas9+mIfJi1HkTHmshSMt4iMeAdPx9ARUjFWdjxPoieg9GK524XqiknaRzIe32mk49ZKEq2sGEkvu8ykApCXSiqQR5tp03svJMZQ8V1W3pWLC+ZUmJY3PATgdKBko4frOLY9K4pbt/SkclpXAyeUP1DYTDQgtnnE+VFSfKNPXZtCkJJKCikrNirVFemPtVn3epddWlS9OzcQNpzOfL9LTKSUJ/pW9ospeUsSk9k1BbYZaAFI56n0LAIWRhMwT9K85SECoOfio12cD9IUG9z9QcM2TrMZ12qpqqyaR67TVDPHrXpl7kgkocMDjWBJkUqTCreSG1kqNrJPaEndWwX3ZVJv+rxAOcAKPgakKHPFByEjji5nAuiKfMpLBfMrB3HMQphJK6Pk86/9A3zFyuKW+4+31vfm5yzZ9XLfp1EtR5wsGtJlurLXokbfgwzKbFxXGUApzKNyzkqVWTJEUS5eDR81C1yFx+phInI9GMU+kUaSPiFfbEN0t8+kDnTJsEovaOjKwSVN4ycDCOtUtRJhhYzhYCzZdDbZ6ABe8uHyI/ss8GqWDbHeqPE6p8rTGkG+cThQJ1Rs5Rm/PkSU8g6GXSgPqn6vq73gwTiZ/feN8rz0bwxCcm3tRW3InFLFtbWcp1UM0YIZuERMbiNlUHCiepRYzGLZNnSLLYAS3oN0qJJ1p97gb7SZV2iUDskIYJVN8UNaNwfuFilMvUCPV1JFUBEYDjV7GoT9P+IULrmzwLnSlVWbdy2ZlSF4njJsoBjNMOfhJvstqg8/p3YFLXWa/VmNhnQ8QyQkBDcysOi4QQsHDbymam6pockb4tEbE6nMPazoJBvZpPHgL3u1PtT9qN3/vg+oewBFo0wsNjuGQDjDDuk0MMVbYpk21Q22YaM/l6c9XnJZn6i7uG5iMyZmH343Il5f9hpxeuNSwYdQFWExTULMYXVNyZhQRCv8JY4wyffc+cUnlF7MI2hAqlKn5rJcythB4/145H4CIQdpQ9Y0Dh0tpHPQq8qrPIyuShDvvmwSXDhm1lVOktxUwNqilwzCLEGamZTJDCRjrzDRs8KgIpgQR62EFXDbt03l0zU/zuhUTR9Jg+3cg2AaRC9Nf9IezAzDiqfjihnH/sH93cADXwAGoy0GLJm6LTcReoJr4HNq+PlBz4Q06U2xpw87kzwO9IEe9O/igapjHoAEOE65JlbnOnjmzMH5x4kyC9dTlCviXoso0tnj9ZhbQfkoCHv3GNnBIUw/SZOtsoEXvmxX07aiilIn2zE8aKSjXFWCpG6iQgKgbBxwpUaFXX2ipckjtSNZpB2iFoLZtqbA+2J2tV5TyHPRsmzloO4HjBoGzdBq6bhZa5Dzd0G1mMosYJjUxVYzHMIaJJQxzSPAgwey++Nos9J1o5SzTXDGdFGHRzYNuZzXZxJ38j3gvBq2Wc8JuEnrsSFwLoZ0poQnLLXukaqIdf/9CkwtCcLTK+1ztd3b2ODcMHjSZ7erYwXru0/77z39rl/J3FmSAjrUJM+zQjz1EMDQSG3SJYUoNC9Qr9ZOgHOkixGBjRG1QNfQoYYazLrE974lXLlbGOfNF4+YAaLZSgXe8UlGfDJynnomaEZyDQV33ylDWvfrK6pBq4WmRbl5teJhVnlMvcn2+esDJ71jgoKt7/MYwKAQirh7cSdx6xGnVOe6NeZBya6xpC6QU+hZl0slKFlgSijiHM60vAjkVK7QL7Tirf5zVOgaH7zA9oqrRY5a1dayro7QzPwQl4ccz7nojQH2tnD9GThD7TlIV9VUq6uu6oJU5dBF3wYJ+F3o7oWO9LnS2udDrxHiiKLEPt2wz9ejEmSdPuvpWHGcsZDHbYIha4B/aKFtA0C1LRxhjE0iZMt3ehkn1Ymll3aijc3jS5NGf3DPdqjh4J2c7NrbV7p2zKxEuJ2zKoT/EtL37xojOLJtgzHTLNDHJ/DdsGrqOKNXhwAANeIwpwUkLyyu5JGo6j8UcoLtzctLknOzW3FZPrhXQLeOJmd9yWHP6OthTZeL863/WG9kFH4vy1W7MSc3KovVGFqvWMlij35aRrbeiOiPerubPzjZUHaM8oFLP9ZZRSF8s7LwNEh7FXKa41fPwrjifiQTI80A6LCK9tZos16QDci7dpAEyolan20yvmjRBZgDmIoTa4vrSutp2AROMuq6sLa1SWdna6W+7xdjILUwXskLfD2++4SMYDCWwbaWwUVhUTb1EqKQY9FRSW8ac+8mK+GQbP7USpdyeTLvHKtdEI3PGlCvfmzsobUOOZWwuw9DnhRi/U1XyAhC7Smlo6yVQlX2AzLX8pvKoS+kJdSi+9vxRDBbh8UC7m0faeQRHicejeTDexIfLhnfpyS21sOzPpeWtlLTq25Uv/VSGoGXyKkXln0cJ5Z4UJdHNnSgJ/LxB4FEbSdccjN+2jGuElrp+hdgV2z9HoqOHeV+Mf7nwtmKMmnUy/DXJBTsM2Zfi8bN1wfgusc0Owfh60F0qTD1I/wSx+Ps9y7MiGSyZgTQzw68/dfI1f9rO1+xo/PV8TtzV/HftaxY0mE+hS2Lj2Df5LqpanU7WvFKipbnCeV1+P3eS38/t5NfgRP0uvi4u62UV6yWQj+6xmoZyWa0duKxvp7O5H8vtVWfRLz+Okk0SIs/bOKrxBh5qvJXb8kRpBZWp1kNnDqx2N8uwelNnvETixPOHr755/fXr968ksiMP7paK17QvDYda1NWZwYhuUsxcm6PLoUOHxtCkf3sV8UkiduRRxmaLwSyd2AhlOHHcq3EUCk2qTeqWfQ7kdkqJdeot48YqOKtS2z+6kd/aRf7tua0x3XzDtOt6jDeDoa88qT74voYhA706O8hTPCrF4DAmndda8GZL0waTIBrpCCE+tjcjMiAE27ZBsaETAzGaGRWjuoUJRbZpmMQCB27zBKoWi/6gexX08cAkdfBLpRthT/YHe3CRKUBLdIYIAl+Z2WkiC8jENmyk61THjNjE3Cn29xDWm9cXH/eArYqD21rOKlb8f2WucsbMMgR72BdcdSDCsNJiuhPVNpk0nUym5XSTDFR6qKSAB85EypWrBqyioQ1RJfuGqg6P80CodtgLAI6cyoa/Uwn5aYlIsb8rJ8eLfprIhGGLGKbNLNswVKJ8c0ZEzVG+mM0jvN5NbkieT6/cbYxvF2nz2+bF100gOlPKD/qwu8z0rrt0ok2TI55onxUlpoksaiEY1XUY1vMwua1TsSuWEYMh3difXThrtqus2U4n98JEZ8pYW21+Wd/arWptaehsYIITam9m3GRj4yafoHHvKr5wvvlC2PkuFsKeau/kPkQb2qxkrJBh486FskDyaValeMX+hdF83Eny8oJGuB5qMUTctf3mhC4rIoX9SumcjbbMfisoEmV28cdqo1jbL5DsXLFknkdxN8gKdZk4fsf9LvKKx1OYFtteskcUPXvkHS+FlfbHWUXbWEn2ZKtjfM/QXw1/bzreP8YucEUwh2TtDtjSkj0F19NmiBFqGtTKYnp4APMlGxmGblFs2IyQx3RAm9SlzS7amnjvmbZVxbvpXO2JXI0n2y/ZLL1XPPKuncS7blg9z/ahN+1R/zAPru4ZAe7fqJ428nCixCRlbvm5cYoEbi2PbQZgwZlVaPqSI5v89tkGDvvsPk/9IQbicbuBWPXtIfJdluQr3kErIvItI/p4oIMjR2xsMUwIxdRQmyYxtixETIZtbBNi7/cg3uTppUKpwJ/NGXJxdODxN254TwJ/1S10wzUp/E+ojKJj6zQRI1LQRfltF8FwMcAjnVkU/jHd0rN3FIoVPRjlDYswZhCjzUD/UPpWjymeXUV8ftfLEra6Bc/VxVtEXp5sqN5o/a71+yTrMKfyKIGdGXY3yIsN7Qfwu8qz3xxd8YrlbBEyfWvx1zAv5PIVk+n3Xh3XBC7qlVvYlqcecP658lUBBatX6Z+GyQqvezTyhSTTstJXeKp3eRbldD+2pIRtmj3VHtcVi/xb47qz5Nk2uIoFRpS9G5UIfs9hNa0CqqwbqnRrjaW/dY2lMDsuvniWmA0Kq3eDlpWgrb7avT3A7MEBfnDlBYgJW+qurecv90UFPoCDjtprlCDuF16nLzE+aA+ycd/a+96rsSBemxVetEuMPMpjsRxhwsxuGJsljC88d5Jo11DleP7Lv3jQHmHzST2FlQjKP20SczDL5V9RkX+vA26kfIV6kqSKqGFcHOTUpHBAbSN/pTG2rW5IWw1Ivw2CLkBbnxDQdIBgZrWkZousBNrsyBt2GemEz+VOwfYY258QxoKFbZJ5ayjLOYRiwy5QM9GbHbY1c4VXHYj18ZyrQnAc5szMWj48tfOxiRm0ODitf81/p/f5v95zUMwBwXphuMY5JIwWVIJ2Q6TNRsxXaYzpdS0y5K4PC1W3Xbp78aairRQTGsS2XvihakS3QTOZlf+ksUNCB6DBjCJTt22mY5ptq96bXZktps+oxMv5X2joMH1G+0fMFbplA2SYS9NCRhaio5gV2baJbJ8X/5CU+J79wbgv/wdQSwcIGv0TvhMQAABibgAAUEsBAhQAFAAIAAgADAdtP5iuhQsZcwAAUnUAADMAAAAAAAAAAAAAAAAAAAAAADc5YjZhMzgzYzU0NjQyNTczMTRjOWUwYmRhM2Q2ZDczXERyZWh0aXNjaDM0NHB4LnBuZ1BLAQIUABQACAAIAA0HbT8a/RO+ExAAAGJuAAAMAAAAAAAAAAAAAAAAAHpzAABnZW9nZWJyYS54bWxQSwUGAAAAAAIAAgCbAAAAx4MAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
| + | |height=343 |
− | | + | |border=0 |
− | <br style="clear: both" />
| + | }} |
| | | |
| Auch die Kraftwirkung auf ein sich drehendes Rotorblatt einer Windenergieanlage kann man von Außen oder aus der Sicht des Rotorblattes betrachten. Das ist in der [[Animation: Windenergieanlage|Animation Windenergieanlage]] dargestellt. | | Auch die Kraftwirkung auf ein sich drehendes Rotorblatt einer Windenergieanlage kann man von Außen oder aus der Sicht des Rotorblattes betrachten. Das ist in der [[Animation: Windenergieanlage|Animation Windenergieanlage]] dargestellt. |
− |
| |
| | | |
| ===Corioliskraft=== | | ===Corioliskraft=== |
| Bei den Überlegungen zur Zentrifugalkraft war der betrachtete Gegenstand gegenüber der Drehbewegung in Ruhe. (Zum Beispiel die AutofahrerIn.) Komplizierter wird es, wenn sich auf einem sich drehenden Gegenstand etwas bewegt. | | Bei den Überlegungen zur Zentrifugalkraft war der betrachtete Gegenstand gegenüber der Drehbewegung in Ruhe. (Zum Beispiel die AutofahrerIn.) Komplizierter wird es, wenn sich auf einem sich drehenden Gegenstand etwas bewegt. |
| | | |
− | Diese Animation eines sich drehenden Tisches zeigt die Problematik. Aus der Sicht der mitbewegten BeobachterIn rollt ein Ball ohne sichtbare Einwirkung nicht mehr geradeaus! Damit das Trägheitsgesetz, nach dem ja ohne Krafteinwirkung der Impuls in Stärke und Richtung unverändert bleibt, noch gilt, muß man annehmen, dass eine Kraft diese Änderung hervorruft. Diese Kraft setzt sich aus der Zentrifugalkraft und der sogenannten Corioliskraft zusammen. | + | Diese Animation eines sich drehenden Tisches zeigt die Problematik. Aus der Sicht der mitbewegten BeobachterIn rollt ein Ball ohne sichtbare Einwirkung nicht mehr geradeaus! Damit das Trägheitsgesetz, nach dem ja ohne Krafteinwirkung der Impuls in Stärke und Richtung unverändert bleibt, noch gilt, muß man annehmen, dass eine Kraft diese Änderung hervorruft. Diese Kraft setzt sich aus der Zentrifugalkraft und der sogenannten Corioliskraft zusammen. Beide Kräfte beobachtet man nur im sich drehenden Bezzugssystem. |
| | | |
− | Wie die Zentrifugalkraft kann man sie nur im sich drehenden System beobachten.
| + | {{#widget:Iframe |
| + | |url=https://www.geogebra.org/material/iframe/id/SDk7Cgrc/width/964/height/543/border/888888/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/true/rc/false/ld/false/sdz/false/ctl/false |
| + | |width=643 |
| + | |height=362 |
| + | |border=0 |
| + | }} |
| | | |
− | Auf [[Animation: Corioliskraft|dieser Seite]] sind in der Animation die wirkenden Kräfte zu sehen und man kann den Wurf des Balles beeinflussen.
| + | Mit [[Animation: Corioliskraft|dieser Animation]] kann man zusätzlich den Wurf des Balles beeinflussen. |
− | | + | |
− | <ggb_applet width="491" height="305" version="3.2" ggbBase64="UEsDBBQACAAIAPIJbT8AAAAAAAAAAAAAAAAzAAAANzliNmEzODNjNTQ2NDI1NzMxNGM5ZTBiZGEzZDZkNzNcRHJlaHRpc2NoMzQ0cHgucG5nlFz3W1NL100hBEJXCCJVuQjSld6LggiCtEDooUsVpCg9dAUpVwWU0Cz0FnqHAFKkqkDoTQSkSZPevhPv+w98eR5+yZwzs2fP2muvPTPhha7OPRrEVQQIBKK5r3FXHwQCo0l/FOTAN0jXn8ogkA/L/bsqhs8m1tPhjYwje10St77MjqmAGZJmVNabbIzxNY9sRO6/bBq98vFF093LH+6/7JxhHZML+4DF8ukbMt41VNZNrN9tme09J+4K7/LRcZw820wbXA508P372W9oCfhdtyxck4b7f3wmVcfx1u0FpxP/ct87hnl7eXlpbcwEbAoVO5pUn366/7qe7oooJpNDwd9baT7icv3jpj3iNKuU+1ST01DOtFm163iTSYXDdIPvxsRZ9aT75NPV4fyAX1UHU14JVg+kpKRqEhSP89oWns74OVZ5DSrUzFeNWjZMsz5u/FdhiwAdz06xTGX3HbMeR5q5/lvccn5sgnUh5mjjinzWiOPxcr/fWnh2MI03bDbjFIAu073TmK0Cv4mU4HBm09Xz7dHGz05/vn54vrdaWDpQPfWkV1U3j2WmAFVYFHSyb7I8kF5BIznGNflsIa6iX2o2Lai8uHqCP+xpNLtv9+/ahfj1F7wZY33gtaUlo+WN/NwM/uKHb0XnN7SE6+y8QUt2XBMlFnKMztcEqeRnvIe0K4prZmQng082KkosGhwaNqrNqk9+N9yb9Rm1oJLbqDQwp4t5OpGn93F/8e3T2aCDneCk6amp1evm3KflgmZHScaWfsd9YoMv+SvVYpF5RNWuePaKOMkJvknXiv5yt5ppyUm/5fQKhf0x7kmX0qbyoINpKbk5LLQcSicvOhlycVYRtD/OOwm4kAp4Q3veuOUY5TvtMxr3eyh3UG//TP3llXnm6f7+4n2zluCzZJECYmeC/E73RshhO6eNuU+6D/Emfn0438CwCPyWpYcR/7tmNnhcBc7+hj1wq5WFXuHHc+7ydjolebk/X+9wuzb4rCVvlPcKj0exuktHLz+UWXyToKN49NOg+eL8RGyveVB+96VVILC6E49V6iQD/3y791jh4nS3AmVsUfW10mkIUkakZZe1w7mW36+e9p389idh7m4+ZIg7Qf72cVkXB+tZ3sf4mEm/5oCD37dcQYlSM88WZPKsuNjePCE2PN28o3j2Z4jp2Syd0ulXkWZgrTeqrdujpj1HUMb2AqWNtz3iTMAECb6veeahPNohcy+uw3K6OEMCfb/f57VvOZneLJ89369hKIcInnzwpuShz82GFnktD0RWu006XJxthlSQhtNtWXV3d/dpA55sOVsAwCAQCeumV/aBqHNRijLRHvY/Dn7N7tV3axzAyNtIhxB1DTCBI+jPt1t3lR8kjwmmm0dQakxDyifdG9xCrwhvBa+XdZV/ec2buWE8AywCcbKD2eqUbk7DUgD0z16MtwChdjkjoPOZwCpj7QdL8Dolb1ri2flBS8KA7DWQbB1WIIa59tJ1EN7uKsiZi9XQNfQAUSoTfvB7tuVip/VMy8PLC4i0X1/fU1VZPVqarT2YCXDUL/1Z9UpIeSqJVujNWmnI2dov5WQP0DyYUXBAdnJlDtJNYMqDPGL7Wh7XRzbXnxUhBqxZ+4vLvBlzs6+AqL9t/bhxW/3PcPPREm7hXjzb0aRKOHn62Md7CZfveF18zlJ9uA4A64VKKAcD1+HV/qc/SuyoQcYgSm86mZ+J+tFIfhSWR5CLUD6w+9kKLOjMtNjj6UHo2UZDNm9op/bV/XylVX4wG3Jhf0Gcmppy/gSA17Fususly9DpF97MqUazGnd2KNfBp4MM65Kn0z7G6jmgbT2bbHB12dGgcphRsWm/isVtLOjK9/uR19WqLl3i6uSHFV4RnAcXYigZtmTzjeMjX0diY5gwej25Gf7OxArHwXs+A1aB25Eh74F1XawCwi27bYEz+HB+OTP4eKVnEOAPTWMLnxFN14ANgIM+1GTkKLSbvSiWfDwj74v5N7jjlQqZHTVeZ7NZFapMrwHBWCaY8nRq8r59I4hHUSfrCN+mfN4P+SlP+GCjV8mGGxNW5s0JaKeRkrdIH13dG7VaNj3UXgCYRIKg8+724qsEpXPpgKV3jjfO90pD0q8QpK/xdZpgX4oLpJ69/HxdO8YHo0nNmHsnth4iP9hsRwNS5XpxVa0Mos/I72SCZUpE4HPTnmgaflBG0n+MWvmp/xy0qJma0kYmv9T4JnurS+n8Fk4x6FgZXgREh4kbgAymzp0WABYKUN0TssMgynXdiM8P9F5a1Hu/ULanlI5N4H4AM1am8mDJVwsCY+GnrstILA+j8ksmAr9hFn2rU256cjrgJoZKPnP9OldqJBOVoQkEHa9dlHJAtcnugjxdeRjSQ8KK1NEDk+R0sUdfs1ovTpeVAjIDd740SY3bvZ5RsT6gXZUT3vaYaWoP+EOruxkEJKN9xZP1ioBMH6KJp9/eiPHB7/EKx02AHp9u3eMM8lbzp7kH8NYePYAR/gn2p1PvTcHscFq2Me68bjPh2rmwMXO4PvjurWCEBthBr8wBUjSHMESZJvrsQ33X4ZiVOdWO75957yqbo8IpsdKYkW4hKjSj4BzPXeUYpCiTuYlxPRK7KC/DOUdrNw7vjjq7YInf+yKznHb5zmU79i0TaeNICcYB0PdTSpDXsOTmC6+BNG4CXQitVUnD73pj9mdzoVLxbDI71R4bph40AHYXEn2AQHSvExuQtq0DpddyvDHpvcfh9/O8BaAVhn8IotgcrA0sBsK8rc1Fpgt+gyFH+w0oilBAjdOsy/LQjHzXIFn55sZY/loEPgKOFRyE2pL/AzJog6QxaxEK0tAcXhlYi/cv5j5HfZxYYsNJuEjCEyFGA0ln6NUElTVk/efX4T1xtxaBALOjYZVMGwKSTS07djZwt3847+wp1lWrpRBwZDJV/9n342vRbOUTSufbCY5QD/A8mwoTD/xRMf8bTdjdmBbnhjduegqdPozCHotX2KgIH8idfn80BfNx8TxQvgKqdc4KtcEDOKh93gIRH9DeswYLdEEnIEUDcOY/Qqcmq+ae53zP4hQNMqg+d7x8TjG1RzQTgVYWFpX3sN2+EebfFLnmNx/JrP7Uy6swPNkoVRZAABzaCCqF9Lv6n4CZ+gPAeXnkWngGcz+dQahBJDVjQBUWNqbMoHtpSO2dfj09vkKHDUn44GoCLwkTORmyg3/gJxS/EQEbXYMM9EueofpY+T7I+g3wu3YkZgduLFdkGg9uw9vLujMeTdV6GgHZ77CLgXF/b7/e/5qHVE09zVgm+Vgc6Jl4BbiIBk6R4Wuhm3RcQc9DltUXxoip/hg7cJsrxp/GI8HTSLkgzbgNKggWWE3qiqCgsMhCgwWyiFjYADtAdL4zVv3+yR3i5X1R5IfUCCsK/IpjVYnSFWK2TajvLbtEQFs4M/wZNffqP6NFS9XIugPkY91g2eTfdP+F8hwjgUkuQjda/72f+3sc/zAj3t8ycdGPka/M8A0/Rq0VYtwG5l8PE5AspBVlFLRHhOZp95en60mnW6VlggRgsauV1tBICul7N/eOgizXAiUjKYkWT6ev3EAH7Y1QAXpBsmzx3WbLxXnTnWjas7pZeyC19VkCbWO9Qd/UmN1UM/i+fhcX5Lvz41PYh7nX8Gv2cHzpXMEDaL4CrrPjFT0Y9A8r6BEE3QbFMu3xZ5XH16PgzKIOGkKaZndsTCDGw6I9SGPeK/RkwakLVMZes53W2rSPs0WrVlHuC3jIuqlLcVJx7Y8Y2FzASnbKwPBe8FpxzWkOAAAtdfB6r0jLqSoXDKMXfNUh5ipKcERV0oJZPNvSkyj0fOMWelRDmJz6kxMaIhj/QWGtqEKzzIScUzca9PY79XKgiTGNSYEjGEPUW1BOpOVThWLp9/ixE963VXyDRavKHMEyMMEeJsKlWAuvfolxxUUg7cpzmS9bHU8DVNxVZNUSvDwLaCZsAT0XKssXpO1umAfL/fEaWXDTfFG/9GaEiXE08+pbUTJE8ktwG0QZSUCUS3/lkdQ6VMbCPoAY4TmpmlHmFhm86r2KIOTzS6wdSZPOuAME06d0H+QnPxOyCaX+f7I+FgK5k6G8sLjaNHRjUOkiUNKuOzHuzB2Yv+3+58sP01R+38BuEIvNQnWut0H1s4zelVu+e6KtQIeX5EXxI/e+8AnbFCsbCXd/MCelqTybcXcvuy/CGraV3s+3p6yj2ZF34CAPQMK9WNUP53AdKCTuzhVs+HkkuUiLelqCk+OFSZohrWr+R6yIg2qncHBNXd3IrYbtTtZBzKfknPYb7vkTECQ+SWVIsdRDFWETiRDMArGcbAfnod/wehjqMatcJmQACp2n+8OjkWudGoIZ7SaOuGKU8ktmEMRYmfetZlXOtjHrVQ0VZ4X+bG2wFhuy+4MNpfYWL/3AICCfjYzXhx4qxbGbTzc8VQptHLXZV3aibsEWxAtQjVXa9tZP8268q+l3z7+DoR2TgaceRlCBiqP6IQY9HJbP5iNZQshMczsF2L1SLP2dAqntKHmy/CkZEhlay5yaoTJtUP/HHRbFqf0GpX7KVZiq9tAkSJTpDVoqO70yLPsI+9wm1geAWbL9eHyKhe+4F59C3CzvQdJhHqOTZYVSmBi8fN8P15ZUz3gd+8PH2/dbq/qUoVo1zBREpezksICVSPMquomFoglU5noNjeohV9ISNPkgKh0Wu1k3mVzAOKnV3oJZGBjJ1HvyEdN+JIOZnlp9Fccq9fud3Gbj65w/bFz3dG4WJNCWVH7J5B8a0BzXhxul0Pyo1rm6kT1zOKAkrIXdEK85aNIukxTU5d2nslupLI+sXjmEZGEZ71VBiEBsyAuL1P/6cIUD9DnPmFzIg42cZYtDfNKT0ZVDvDhGe6HIT5nJcPEqT46OMBhZg92jD8WZsVcEnx0rEGr9emAF/ExYFDwl7v3Ev2bpkAdybvTKdSpjRL+SpxRfP08+Xae3SDBYrqtmn3B0m6iKm8nOe0WplfUhlJvdEIQU/TcHpsxEi8eqfYFYLQ4WvHw/LFDw6lCAhSxPiwOqsdheoONmScEVWRRZEFkY88IrsIk5ESWI3KoPA1wevj8gtym/NRhyLgZB1r7HoO6gRKu2h36lB0cUwFw4NAy+7tRaYF0m9zfKiW6Td43vXd0s1AVzV1Fcpg+H4cUv9AoQDCDTZAKK3Uz5Aapa40L1xQeOUI6eS1/zf2MNc0E4/nH52omg4idV2MUgfmiRAIlTHYC6bmNvLpwOUiYDMqqCv1HOTMkZfk/xZRhm6DejGCbQIwGRxGq+JzMUxDrmCZShU481p1XfQ0xky4e/RRbwBIIiUFmsez3PhTE0IJgCKK9NOFBYrjdsY73Hq1U8KC6mK8/72ia0D2ZMhR74RoJ2l2t34jUcUDVcBFx6BCPoT2WDfhny8LspPn2kJKVIyTbyuSvUwV60yh0sYNx3uft7nfoN6B2L4hiUThE595iN6PodDiFr2G34r7w7TC52SbAi9Scm6KUO9BCtYCTjJ/8Nc9vVu2b0GCDuzQExZ2ZRNmoZIJTjtPd7+mRr8nGLQgWU2lBcDqbrehvOV+3KjhnK8fGW2INNMOZRhZX0a/Ewvr8+1cOv/OWSmX0+mDxVJ2rKZE5zQOA92FAaYZ5uJj6aBC20EQmzQ4z12BRVj/nK/muLQM889OhY+fUjSEG7t784fuLnl9d0IYBWbbZ+0BLVfem6hgo3V0d8upEQtx1swvCbKcqMxVvr1sT1vmxhvfI06HKbzC02pI+mL1grS4tPeWCXMVjlCDL64wFM7/4PfXz13fdnrn4mYKOqCRNqw52vigNUdCAjIT+Ow+jB76FrZ/PRnMfayyTS6BEolX8df73gkVtFvyRsjvyn6+1m0BUFZSbCkgqxHpsKn9ZfTnkHbuVXC01+X0n9FJUkmJNsPcy8FgEFCYQzdgfPNcqQJ350ihcIIHRihkLJk7ItTEYKnM0hrhzmxf5MGJgfsd1x/PumJAk6KhbpeobY7CtF6Q4dEElI7sgpGMBYzxu3CFe91gKx+3umTHL2rMt3jEDLGtXQGCaCc9sd2SWNL5CXqXrYawXK8QsUeNC/C+8HBKBA90zkc1fCirAutqWSAcp++DDBI3yT/14PqT5uP4sHmP8OknGO5U9j4d1reP2HDbJ1+gRE0a4B/kmH86JydViMxJezRl4uA21UVodkOaRbWFdGVVkrLXlXbeWJu3L8DtalqEw9UMgDig3LiurNqaLQJ5jiNYtNCT1uzskAiDxZCPqBDR7TPqP2CgH78t82pYEp2oFLHEEC/RguAiLPl2XhNV+/pJLvE5PuHHarJD/DipgvqeYGM/BHYD7Mi52FWybgU8os8xftBcRC2UoQR6lK049G2jnKGP0yNiXtIc0K2PdxW5gBeETVrOSwkL3DnklwjZGpZb28N35PbqC/mJa0e+BNrrCPxCt3dV4dUWFMspzkrKBAqn0xKngU98Twe/OPPBAQUIa3yX79uU6ulcsQw7r1pKQR+VzPHFbLf+7MxFvij4/hzcVW9aDeh8pX8WdaPVPGJl3m/T1RtcZgvgvkgy+P5QEFh1lO8xpgyRPAZtMKY2wD+qvexFTpVm2PMWb4WYK7i836X3eXShdFVX//tNx4CAWVf3q9Yi4xEZMd1YF4VB2uNbCsweRXYLnBqVVgCTMstNydS42g+KHoOum/VizSU963vPzEq3BD0vPH59rGP9+1BrkYLFeZ0PnLbGPoX29k60xrBEMlYEUwtwKP4u+ot9dK60p8dmxkRHa8TCAotsWCr5DlouWxnIygbEcTmMtQ0Q7IpR2S1CqBwvdw4D20wbGjhcalyjSRYCj5aeyaTj0Rb91+qu7tVRgnad0WUSu/8um1ju0w4/aDbEdKvL5/2PcEbHGepYBB2S7U9cvrVFBBP+KuxGPmfhdWViTfeIog5EeZNHerq6TqysNW8TO3KOzMKG1AcRG3SzC2yhqcdJPRDja2VUuYe75W2nK+af50blWmzN29akzVy2ePJMXU/ZfASeRXxvS0dr3PK08Z8vrNqvn8UuuTmG93x35ZDRLE6JWAMifIsJe7n7hfVQYNY6+dbKflrC6JPZpT5dDd4FQ/PlrPK6rk7lVF7QYsgo1WR+pVkWlSmfOnu4MXzj1vbo4eTwPxfQKePKxfK1kLDeuHFqGeZQ9wQlGNJrFLSaqSkc6Wlq5X6dSyncWZsfZZYARyCyIx/D4q64MzWFCmDPvWWzg7wIQwIV2OqvCtTGaXFlXCI0pMc/asDGrYLYHQ6GSLOmveHZDjPvsNhNoZdnovB+fu/68gBPUtVQSDYw4YhRoaPBxxtc83YyJnv0KYGBA25INS86XSmL9odd5Rpbk+5/NG5tNurHX5OtTD57w6XKc/yOdJ9iqxYLQnq2CgiLESAI4uD06lxAPcO2JspZCDm/Zop4GeksaL3P/dsKnepR53dW+suGYG0YcoALvgRvWfMcmGpEqJ3DRudNp1AKYpIokLk9yY+3E27Bd5HVYuOE7e3Z1g/2UNKypBhRXdNiWkdZplP5AwTz7A5zv68cB3Can1qHJIkXKBU8Oiv3mpZdNhHa3MT3pSYnCr/CovBN7fqJltvigoLIFgysjBWH2gzK36+I4s3wFUZa/GJNBtWpvjTAyrhthNVufrBqB63h3yL5NJoz7DnoPRWeQeSc3Zeo80R8ut4T7P5l2HFJ3mkWDJh/kTlyL26xrZxhjx+uWmIr6BJJXjXLG3OduyPFZm63j7Y+gNqWHR74g7trEx+E/7b6dKTYYoUGv5MRZvG8dqE160aH6B+Gun5r1AyMAxObU3liHP9PCfnZOYcfFt5elGiMuf3NuhyOQesm5WaUxNrglZ/qukVSOf4q13bHgAmeP+e6sSS3ujVo7BhWE5kd/GTsVFhn3pO76cpZZwXsOFEQtMGdfCyFnvonB2gnyvldUw4juaYtUQIabypYTQMQF27yKBDsHiIWcwLv53eV1J9VBPjtn4FPFIBXXyE2y0bav/JV5hH/3Xi9VZ5tFWfotJnq4t5Ff6RFZmChRALtfM3n2ouhY2vOA7w7syUnPLRM62MGoQcjN5fdDPBWkep6wlV61fOyAyiuJuFfxn0ek4qfioXhRrb0U8EpP7lRX+3yzcm/aI8320yrumagb8BqXIciTeL0s7FJfSiWp9vX2hX7HPhuX8egmPZToBCzC+L85MzH2wq0kzca3SVx1N1S/OSqDl0pWXFDFPHB23B7PN9JLkB27jfTTH1QF6k/5/Cl/QulETw0oNQTyUDN1D+NDp5LBq1WqVAQ0BM1cYCKKIibxEZoSNU4KAtNbRPFQChYESSoQl7Zp0iBGeEeMWnaKKcHIlNmd46WDXSKJ5A5E8jkZVXkXnP4spFrYPmISNyXekHtevlTI33e5O1q995Vfiypvkv8/UQoZX1uyofcFaKAwurYiRsFgCEweyk4wNuPrtq7hQkqHprQRVYgH6TObKU0J93YgDaecrSuwOwNgfn+tcpxrraSMDScbVaJYJU+D9NInxOZq5TuCwmFiEvrIWVq1uopUB8gQx2iNbs6MKTRph1IitAZ6TwOyCtNJNB1rQa9WZzXARi19LRlQbAE44g/fHHe8RLt3QTU3eqHsoV7+uHL4kU4cnggthrgU2e/XeyUTvaiMqtERVKB/CbFmgyoIFM/S2UL50CjNhwvOIf3OE9i7+qIxKHx/DvmDmWtbxuTUcbqXk/+eX1XH631HOTzY5z6OVTq/RijFh5JC81x6girS7E9buv09pfF+hX+b0nGsvD21WmZZLqIFlXTpkug56wp/hlut3H+yS5JKqh0nITJHBxFbhE+JxUl+sEROMeMFxSzYFI0ztesvF2eOc5iPYbKTxCJB57PdTWk7tD291sV2mQrvUu9ukKhNppfEG6BrhAX5cMn8f1M2yyzgj18vKhIv/nJ9Q8K5fMq6v3NNGTuFBKg9GwC7br5QgIkKjtUi+8fOFX89oFI1rXivxxtdfYufdz/02qyfdleTP/gxN2ptUh83GAVDtK2nanxj7osbD74DgymQkTMgUfr8PlvhU5dNQ124u8Ug5sWobhbuf5RGKqvR89zMnJ2aIH03oQQffkAAyL7txtZjw405jle/8eoXxEqoPlKtGKvVRru+LF1wuxEWMenDZNzyoQxw892dqZvwFSGdF+8FSACpuNxyvFtpyFKXrGcFqmCnGqo+wVYlVgDaBVI83pj9MAht16G/JE4QfabpR9VR6aXFVYvsDLDKuD0CLaMTyvOJ5nFnx7o3bnZ5/2G5tAZks0KyFFSCqd//mdJibp+oh7XkAtCPy9qrVCBOU1G7dhDBJVJkvRhWBZhXTxv24iQllFu3FXVLfnuwB4QbIcL6uJjCB0gdNE4wiTQ8tzwWxPI2tivx8A6/AHAIltTa8zQkZCgHCm0+zcWZCZTNNAQktW21UKz9TbWOzx3S45RxRkdeK3rCIJ/bjyL45INE8OEi1U0VOncKpEy8jtipfx8lc/OFZDlZbAVbUj8wrquhDJuZT4514hAZwpnhQihLozMlzqle4Yb2MgVvddenpJ2CccsrLN8wH//DYMeh6Jcmj4xaN81XlsjXzdQiQnAWk3RBjiffwqH//UidGgNXHfq1iQh7NNIXEDPVhG+8jho5L/PJNJNl72yRKkXdmuGBg1ufOuhHKAoTygTWsSzQtOwJcCSt413S0hGM+Yl8BgL4eTqfIlw3baNwduLDVREbCQc83nJjtBAwb+Yle2rnB95ncrvJrRA+WwF1xRuvTmZwYN52bCUPxfLiTVPhoZa4S+0SBK6jQcohWHLeSKDVUdMaNd7ftaoyXrta8e75mddEzE3yyIXY6AOgdewCJDQrK8JSYJj4hzSzwP0JeBRYmhGq3WWF/hAnOJBE+9uqVxGuqHM3hTs2Nbv5JhmwGFHLYb6j5Jw1CY60xZz60sa5xh98DUAboMpvSnmB8R9vKr+s4bOAYUA//zVq4DUBy0H1tVZPgJ9yE5Xw+NOxQY2IdduLACNntfq/hhxWtPNC8hoOPVeZahVCseLqeVt0eSSUya7RDV7YszLhbHeg/YWE50h5MGNJhwZUbc2cxQ9OJBahfI4XG+4AQsJh7+hFYJ9IZoKIyO8S/KjQ6zgvCibFdSNgFSSpXWUTvf5skT8g3c4OaT1amwvFrUpmAbuuwgplA2+UJS9n62bvW8yueRWHacNCncErXbWQAbYzCcr+iC6/GcIDLAJ4RX1Ra3sPPQ7gUnm3A0HJ+vCbypdzV7T+sbzQdzNCJdoMIENpW5W3VLAPr+iSb7iwma4hN2afH37hnfH9PmZZBi7TLFmJ1SoleVM5SCaha1aHUJZ+XTZLprFfRLTa8ehmIKn5ilIigfDZmmflqniufq+Vy8rnhTo9EsvOPG4h3C3y2ylhYHmlDy5s43hkAcfkxA2fzAL0PozkUJp00OpkCNPJlQHatCE6reDg31gqTH56M+/h52Ezk0ElHYHIl+1qlZJwArcYjM8GAsYI9+V277NXhge/O82+R7ve9zIZuVgrgKH2DxRg/tVtv2CU4/fu2UYV+FWvARygwaoPwGScfL+gXIKFyQHSUrwPabieUHBjxW0bQ/jhcpHYOsmNFhdVnF19NBCsbWZgSjDSmv3ORtUo8Mz3W7V/zDmttdMIX62tfw/F3DS8bT/fQWlmg91JpF/pxLVrt1jBje9pfg5qjjI6zHmkQ7NnsxXkK6Xh58ugv+bt9/3Q/ITH6vuINrk8vBBbVKpDoR69Ubiook3mva5QOgwVQdYbvenXuvIaPGTblTA7ZCDm5SghV2synMoegBI09+nH03/h9cBlJzKxGJYW34W/ghV3md+yRW83zsox5Z1uHCwmvPyySMnBcsv14j7FV0F5Vy/leKTfF0TYUnFolUNr4JN+JSt4wFpVUZChMn81vLGSSbLioby9caDNkI5i0d7o8QpdXZI4pMBQQSHRjcre3Bq/5sZtVqxcPF9qUQgq0B/XfM5s5/+tSuZKDO/fY7Zd6vDFSOTXl/D5o5wuv59FMwGa6z3L6U0irKlYDrPytCLWuq20uF6Mp8wGrqonCop5h3ZKSFB94aQqwhmbj75pmZpWvY+XxOe12zIw7eKjAeqWM08TbyELGIh8gT5w9o8mMdBnK1krZbF+8kJlt9RpUWJYi0RmqbDIiZ7VimA8WASJ7W3Bgli4WI1TwFfH1Ju2RYCTE9ZlyR0NxeVWH7fd31N9p8eI3UuFjjWzGVKiAtMb5Wl+k2YhZ4uQ7NzcidubhHZsND3S+UYcVk4Peesqol/yP0mjO4MPhr0/ylp9mAYNV6X1U7xjOWoiXK+l955jBwkt/twNCB1Zll5BsAHWDbsq5xRbXwtASVsk0nN27MX65mt/4H1CNHY2wdBfOphJfpjvO3aU1L/5O3Jr3XoJ2mAzN4/VLj8N/yHT4x6q1UQVsNj3d//UxYcB/NT/3r+SbJh1uCVmFnO2NAyJCDRwJo8dGwor047HRsCLZalcaE5CWe7GDhkY7hVGH6dtxWlFWzv61jsHY6RzdKoPQSXpsXMXEv6aSYm0Fo97i79ogkl4E2gQUEStU3H0UsYC8ktxnqGDb+ZLlABA9pfNPM3Fm7HiXkjqHszu0Mnb8MA1QmJCpDYrl61dRUy476xeF4bHzNbVcLssn5V5OQG4jTMiPNepHJPkk3t/OwWiPOMleGCPM0w1ktz84NxmRG+PgAmM7svEGgg/R0gsvxcoTwvrTZHaXg0fr6kaeBJxs1CzsALWp6VGMQMlbdbexLCJi5c1QWHQ55fDPqkjd4d2SdUjoSBQVGVrODFJaRrhsNzRf6DdX5YlqCuEQdFMAp9dgXeSqvC0b1TffEYXwH6v1u1cHu6MMYpQzvbY7mB1Fmv58LzRJlvi2xynz5NNsBMmlMyEXZ/5nJweZaoGiyp8SmR9XDmVpdOTc0lHOXrF3lQyFua7qJ0E+ODwXovkm1ImBWfQ7YOSa0BPD/MXL9vAxeUsqNG5UgJCT1LgeESW57ywHQbniRqMObOjvzR+0XAT5XpwdHFB7TGc9a/rYAMwTTKV0ajXw9tYCIHtbgo/3Jx/TcSGqOQp7yAp+JCOKfvIsmxEQ5X755k9YbTQWPvn3lSXNPYZzjsULmdWMJLMUCcK0sOm5bLaeOEZXWZqXcR0TxzTHl79nvdw6hmQ+Lm3a73FvOduXauNEp3EsAcXiTj3U3d2nozOB08o0U9zpu0KKpf+KYOreZ+qkD3aF+2aECc/jsNTUiZsaxbl+5X4y5b4gUJeO4/OqyPqhtIlGQ8H8UUa8nz0lUzC+glHj3cS1GknDLH67q9udtySnPNplmM09Wru9BmRyGUYPmk9+e9UCwuva4tUUiwZfC2Fx24VjQij0IngEZZxkmM5VGDZVwGxmMthUrIdZuzSGB4NyoS+zZVvGrLAV6SZh+cV6iTrKj+QI3y/FQpo30IWCEr1LTTlQxHfR0AwDisigQyhflATCe8dnjbiB28rwrCT6LacvS6XhzCzIXMuLd+dawznrtztZtQhaVGlj73OQeKaclFuJSVp1EGN7FopKV+MHRiawlfVyo2s5PAjUP5Od+uB6zMC2G627qVaoG0Jt7McCxEX2j+TGuo1Sfx2T4r1Qk4B7CRwKQcQik4tlEoW2Y2gSUkQYEQHwFp6ioSGFfSBB9j7vgihQmez9XOb5Mzn13UjGnjrbMlTgpnUYp5fhvKsjATo5ljLq+UBFJP0M9Y5c+uSm2kvbBcYqh5+MHSj0Q1TFXqWtFsvl4zv3BYKd7qboVz+L0y8HkNGyvlpYysFWshC1L9ty8rsheBcAkDrVFqDQ2+fgUcvuiN6Z1tzIPeqT47VSKhUfNdH8o5IxO8tGsQ3zS3YSPVpYJl0ZYVG7L30kJeTWySj5xMEsS1SCABuWNLSeNci3Zns9Kjo4NiC3yRY0avG0f3/MNuHXg63uXYKRRw33N+lk2SpXaQLySIeqf2wKTdwbfyi3Ie4Qe1Zp1RKc27I7IGdxcrDZYoOYwE8/1pSqmaAYJQz6tFVbtO/EzIVX+BVvtdMp2ZW2nPt3FsGv8mU5VPZz4FclSuGzUQgyNKgGSBYOw8qg5w2bzQHEpoCDvNP92ZCLX9P1PrGTEo+viBo6JkWtQKy4Hpz/BvLyq42KQUUWtc90SqdbvwwRcjvd3BWzp0tS49ei2S7NQr86FzwZiPZaCAzNRZWsvBGtRoY+sdkFxVp5f1OLBJjaHvzhUAuch/XtxZtPB9PRmkjV2EtTY+6AlSXlLYWeTeJp0V33XiGZCgnONf3vxHjlVvM+Xv8M4k6sFGP8Gfe8PMEt+lXUN4ha1MsnDxiXAKjjzlaNW2I2vfpuddl1cQS4emc9+/U+2uHnEuTumxKbKjaoMnR22ney2Jva8t7ATcTOsMHDOK1VQdGwmA3SXYQIQd3lvbQE2R3XThD+Qeznn6Tz5n5Qa5l0l5Zw3aetVjgnI0RXrJFiItT6rMZ6/B/BkJUsAIBqWHsyvS2B8BConNecLB3GsT81SeFwLnw8I+D3OzNqnscaBf4LKDGjFydXNWOvJvnDXvI9mHt6vJJ7jy8jcOeLZ+P5ZvBBw/rnyw9f8jN2f/95Lx9iRoixUVuEWBOOJmfPJTnC8Z1Hy5mZ6UBUj487Zlr4B/6uW1afeyKvSIddnnrTnJ02WykmsNFXwd3oikjJ+bkkBkzTLfLanag3IJdAnS268AvhQxFSxurlQr/eIhxbT8JaT+AXwvfKkOWarvvr4+Ok+3ik+w7Z8fxm7qIiGzeDdAhCSPkXmm/jeWW/Phr4KAvm57+s/CNPB0Nhp1flPPPRSK8J9MoDMqlXzwYl7FzNQjwwQeClu8hm1unegiWc3+5CM3yV1WQXwrSZF2Ts6cdC4evtVfOnAfvr72jYpOmzkBB5qg57w3JlScGWG970p8/nCk2/+t97i5u8Te9Cs3bBfMXv7lZXeEJvbIUDlSjohGj2WC0p71qpU76KWSj/41QXs7UkH5tcEBKmWXFOur4lsRY6ZOKYzgT+cmkLovNGUJM568dnY8qbIOJCgpIiN0/MmY7M4hsKZ8vYjzahhcOFjLfwOQY0Y14ZBL0sQ2EX0zvEga5scWGfiJufCMuNS6kuH0w3ZltCCiwF+CZAQ+PWMrcP3Vob/LsJ/W7jFLBT8UOj1lKEIh8ljBFJXoTEnx3vxXIZHhtaKowatvKnjDiwUOg2Ji/JOBt6GrQyUCDweQ9VyV1Tjsk+gZh0M7y/3//mJ6SZsjxuha2aBytTFem1n5pkYSn1QAED2trBcbpaWiwT7xzcet6yRxAcuV96Dioc2G22XAQnX+bohrltOYHzSiMWTazHicE1JQ5AZaArzSVfwhw4O/dQuMC0mBpf2rijaRjXY4CaydMeqylxc/Z3oRVhcrOWYzfiQ3c8BPNwoZ4p9wdgXkA1MqCv8izY8Duyc85JAieQR2y1P+ThbxKkfzzPs6R8uBX9fqwwXV29PWhj+X5sWO4tdNKNRqAoqQAqYkcoObWuNKbZkprz0axJawDZ7PVDTWQ5ralUze22pC+7YVJUmns7eDaDD6vmK6Y8tQWv10ibHxGX8lGabpq8Mn24Q926itWp77bYjjKNC9lfWeE2BlbbBnOpo41AasDCCvTxBKYrYrAjNWaLNxbP5iM92fE7/vEd558t719MOOWma7KQXVW+tmUs+e9HWLF6gJM4M23W0S6L/DOP/e0uTjGzdch8Kt9E2BfJK4zEBMQM1+EOyVs9FGM2x6iDOegTVVAsbOydmKOD1JTHHdcBrVZ+lCaqXPw0acN/ADlGbuibxz+ZZKO2zFKGAvFl88MTh3VhbyGC1iBwMg8BlrX+dCU7JXnfGA0a6W1u7ALD2ejvQO2ub8lojFx/nBwKT0v53nKYdpXS4V7KOIPDcQVoIFBxjsZQr0T9XyNKfIePbBsHda82KTQXDUoEyFvED/P+2Svo0e2PbZ15Ohuk92XGZ9Ti27sXRFnPLoCkxANOt7sEDm0TFJDpPhm57evJZu4v5iAefJqyRc8LNV9MLDUN89Ev+jEKeKLTfHzit2WxPcFYU+eUIN1uO4FEGQInbNuK4H8w/dQRKDpQkjafnxc9nm3e9tpqXtX9yK2zd+lwgauo9blovN8XnhQ7Bf8/3RwAK5DuyXZnhJz72dMI8psLRFA9yAErihW1MJ1eOTkLgL/FmUmg9fInunBRXTUTiYQf/ES/79SQopaL8xNXoJYa580M1A/TWOWTSu26E0WdP+wXvD5WxpgRv5rEgMLGi4IVTrBUHTe7TSWopCm5sxhXrnAnF4RSfvbwtL8E0khbJ9uXWce3X+/WK1VOH1UE0sz4zy+vBQKJlJdviKZrST76mvUWDBLP9Ft6V2RcavktM+B33dvyzuUrkq5o9WLyNFohy9eEsgJL0XyLif3gZ4GeW3vm/fV1qBZnC5lDcGvmB6aWWnaT3XAXBNfcB8Z/1l5cKmTkAl3tiG4jK6fm4spMGhDGUFzRy85D3Yb8jCB/Q0cl6PT7siVBojLZNisKLKpFiHmyeMhnHDV96XUQwOsLmeo8UCGk6TjUpA2iBSqgeu0m+oIWv2VpFr2ICCsKJ/a7UbZJgKzj5roi3DiNUpyL+x7paOULCctTMIOUU6cMT+FhhEQ3AkM2QjcpObJt0U928lkcOVviC4Ls6ht60OBCEfRxVs8l0Y8RSkCe0bxQRi4mOE5UOm2jY8feVdUmLk4osQc+lUP0XVtbMlJjlXJPi1xzbmX5V+LLP5SGcuiUfzB+QjEpPP3ubVCIYMGbLmnlu/9+UA8VHgTr7HeECmKrUBVjwvgesIg1FKsYdPynI8qFBeQi1zrMICktSEfXqx/VupwZ8lsJKVVTAJE8LWHVK5Q4fHr/HvE2HF085Kc+8EtLpOmNwp+vd8a1paYZ5RK6yWvXy3tteJm29W3yQ853M215h6lEGhMjXS4ZvP/1zHYJ9qNK/GyFumLAy7sgCKg7bk33qfqYkLt+U6Ic3TGf5gVqoG3OWNxk29vOj4UrzMHyG7zaqX9mtyYz0n7WCKPM9K9BTvxtyr0Twfya3M2HP2IZag8BcYJT2Bs28DS/6BVpSdtbGeJV9et5c3M7ELScYhX8DraHVDDPRQx4GVUJU9YmU+J3I6hjRrcqMCHBQIlgzF/t8cTlvL6ujqXWNGAhTkqSVTHw0OIyr85pc71sRQ9DuMT9vWwdMWUqj8U/X3eDpRPG4WrH/VKzgr7R07ep0UyJL0a5Qfu9HsLUwk42tvt+BmBAKzppyQm0JTxaAL2JBkRT+zswXkvhH91pbHGMMRNeS7bhQx82TqZCjeAg5tB3WI2OehIUcCFtNz31ZO5qsLwSZcJk5GLsPFwex7nz6f5rhMm7frDZR1BsmBAZAXnFjfklcmA2TMqju76un7PaLazliwaHTbxKK1Ljz1OCLGbIlZrRFVR0Hpgb4dUQK++U0FFft/jZsj3BMXxOBGq8VymHYcdTUaIH3PS3LiJHksxb60f8gEk/8yZRBI48S/FqIBLTAdVFdNCrxIEE2R/K1jyRloD20KCpCbTssuKQFvNRyNd4DgVZgSgKV4oXuMXOub260hsPM9aVxGvqHY0syDx8qFe3BubEJDoVnoXOeHV2iT1IMtcJfrDoERUVz6mkGN8gtVwznP4gHNCosjqd6BKX0BCArLYD5gN7fIQeaWdhQoO2Z/h+nTr0vb3ldPxnhZn/xhrMZmr1zfgVk0MGcdqt40Fmq8BthQ7dMOaYjLoGkQ8pv3G3bDsDj4BskLkHyOliwe5jvGmNLGz0x5axf0hLsWCXz+pwftknjn49m+BFj1enSmd/hvLe9Lh9VI+LWTYocVHZTVvFBIosSpoyVT55FfAR65UBLug78omBFd4hFutEkLc98XGmIsu83aJCJn4P7LoNN0AuR1Nh7gxVrOtavxVUvjlaxbV/P+8uU12PfcT9K8U5tbUyXar6Zvvhc/ekMdOr1OZQw5syz+zQwQ1ZDKY3Mb3fXCwug81KZk5SEWMwwx9Xrw4EyT0pYi9397n2gPA5gvPfnYosFgo2PO0YP4SomrzoslJUBdTON347q0JxZCGqGAvdeSS8COp7C2SWGpNTG+yGlvRmWjMyk6syQrTE4foekNGi4a5VEElKpge057g5JSY79kr3KkgJ39jW4Q/8aeOVq+i8Ywjw0LoNRDJyHbslQ1t5kL/8pV5oCEvTEp3p4JVL5GjOs4ezA0Z0wIrS75a9tdgyRM8Og9eMBARPOYhUM0oCOsVNfP89wpOFqbAzIsshaxE4FJG/O1ddpIrqHQm7kDksKmDs8wXgmUKPEWBcp1WULeIsPRlRWavua63S5SuiJzbAOG0Jq1gfQjITvmNxHSi+HxdSMgLO6L36SIouMeiJ9Y4FaYhssrFXMULJHY08z7gvquqFLveMeLsWXyGKWE1xvoISwWY0WO3NbPdWYw/AEwtglzZodOReaKxcRzWpkR0rUYZudHw21QFeq36Axq4ez0tt6b56tQgMTPwH5mJQs0TWInp49XzNp/Abu1nH3i7Ersso26AXvIa10ERUv6lHnZqfhT9dPt+bKHOX0C5LTm7FRZxcFPPs3XkCTK+QAZ9/oXCoWV8KWC6h3aEflSiz2mJxaXXkbwdYVO3cHRwrwNe2wy6eTfa1B10iX/6a3cDI5GqUNnK4rF9aYjPtfHddQpAVRuhkMKMy6QJsxRbrYYWCmwfbd8geTj4pdMqavobdK1QTWvpBMpyewP9AlPeQMLd3ZrxhZLToPOzSPpfCsmjqAQNGJb9Dlm0j2kpHe65lz1RblyRG28soGp5S6e9DWg9JTGymp9HWcnjNH6sas7r549dzxsajdF9I9vakmxMbTkSmiqew02JTm6VCX+KFALxVR4H247feyR2XThULvoN27K1BzUPQU6lQEtpowK6tQM5upduSLjKrk60zhYVUyYZokJpYmASDLbaqTpk3jWj3/HW2BlO8u5JJq+JAmFixn0E0ZxoWCZjUZMMmrMhDbp14ItyNgQU3zcW0O2Ygk41PRGbcnNr2HFtrqM5RPgXGJEv6sEkxQTefuVwsNggJEUos+RhLKHtvkgZzgwlK2MbC6u5FdPGeiMwWm7pN1XpCBLlrohyVdNot3DrpWAgQmWCNxa3moBN1wkCqRKE6qPphpqJ9A/Iw8dqd8nyD3OQz05cAXbFKe2BO2/OXBuUFpkIe/noq6tB3JTrUbG+MxEEVj1vOfBNuGuT00Wagcj9athwt4ShqgGJZlBUQJian4XSK3aT9Q5JC2k4rOPEyXjodfwmwZ8bDuhKYovNwnmtbBKV9E/I178OBNs5gycDDrWyfx4GMik8LPUTOP9+cq/6sjYpsi6s+J5Wv7AXlv2AVzXfTOQcBuXUpSRPrT2YuY67kQGiTQY0uWyRGr3HgOtJIfQ9kcsxq1ZVEzkjxfaE4dm6WQnQsjs7XZ14KVAuGVz/IxU1egq7LbTZW+G2da328qTlEV9VJY+l+slpYauNVmfYeoQolFE/tk/YS7kTTxr1//cQc3gy1+Zh3lH2l+h3yNH+uUAYzXdDfFtd08X3VcL7r7m5pDsj3a5aK/dqj9qP2m1IYljIpt4nKwy74r56RcWJLyAXwoozX0vfT9dftH8oMCMX1hq4f54ylgZTkw4DvSHuc89Fq3GnOiH3VZ9IjXMktR0H4bxsIr3knjV3xQsi6LmOI4Paiw7L/9O49+EUfE4CBeH7090tw8s11T3TNKnaDSeuy6F8gQgU1ky2rptPJ3bWulsSFz+Kor3kDiF9DYKhylrZXWo19+GuF7hN+Xz2VIOFMtghjf4EYfR9u0Op2H7L/Z46bRDf1tGMeNDPUsdNpCPfY6VZ74gXLKRxAHpHJtZPGT7wltq+vZH3JiKc7ivWYt6/cpEjwJykifWC9P67nhk++Aq3vtJrBOPHicrUkIr+aqkYv1xB2QLHmInttCtkbs+qTOccptPEfdYUzrV9ulfJRrRUSxoRcPU3zsE3wBCxmx/MEyB2G6lDUdMDWB9u0gwK27gMzBKZulxnh4ll/ua24AFOFDeI5fECyDCx3cJXMUTN6bS9g27rCHbXx0/Tm1NePPdt/GcrFgxrZ8DDf1N0dBVuvb+UV3qCGkLoij6a4O7YcdtE3UmiGmtd8hr0UebkXjPzb1IUpkwqr8SDUo2Tk6U/xc68BzwA5Q56odOjLcd2jkB9jTBesvrUpT74GTH7A9k44J+AF4OtR6mDUVn4JhuRJP9l6ddhFE5RYXIC1kDtk12rojiUR30uQr+uWkiyAJLt59Rvhc/lzYkDm+NtPIIuUHPB9AQZHvmkRr0JOGvQ2aOzmvP/UogkZMAHXWA8xOsreccAIYGrLlAyn9MkPa8NIQ5vBL8Snvnqx/WcpNp39lAdeZIYCT0oejmoFkKWQhhaMoIhJ3Fj7a+ok/KLZXJnkbpdn1MiAQSDBoQi+FFK7rtPDf53tm7G2/f6v9Rto4bckWPY+D2NfAV5+Fcmpyxt8d3EHYBIHIFSKb2HZAcqIMK8ruZepGEQ6631zZgoIQTpA4ZwAMgFU/vFewoBDfyrqd+92GdCnpiSgdHRaK54cAYqbIwWgFTWTIICvxsfKbCueWFJZ0A2E7948kCibfViX5vJ+M/fl6I/Xc7RUNWo1LGIO3oiMpF49XhKBqMddTWo6mAkoe2FJyymKUTbUEo9zepW85t+XoSB38vP1wx9HbxZkf8lxubYftB0YxK8RnooC0p90d7+PtCU/Vs432sQQaOgRHTn5wezRsbfg05O1k82WQfWXVxhwkZ/teucjYKSf7aXSb/Yqnh8ujImLjFZlOdEO5+ikm+6jtw63F7j/9Po9JuPkmLKer/6FdP9BO28pLIBqPvndQIE+q+39lt9Gd4XwIcMZggEH18mmoCHo88MeJ6+lvhcIJOHJ4zeFC7fMX7+3XsF7FL4Kc2MOfLK/wMjyH95/7P3a/G+1yC6+g0lgW/K/Zv56hhYNlCjVqFuDj+Pf3R/62zDgU9CnkHvz9/QUkgnfH05Hodj73/deQm9XFqyN8ST8H7daCTveS/lf7NW0Xmwg/sKT97C9NVfuP9ieFs6NktCJGIuKVH0P/8j9P/Cfm2ztKtydA1BCpAs2wa4bJrSSQnXXPJahNcELiBUmfCE5/lwSJ3eQCAwApPBf4e0SK0t/7Tembn649VjhP5wvPI52Kc//C60zp624sIeC/GNhJJtGwawld97XBvIIju7rCNd0hK6ntrY8gf1vGhlLUj8QRDdP0ElIa7T0X2NjRq8fhqTRu6PKVd9nLQ6GKbH8XnH6z3U/L4ddmLQwG5cB895AzAc3Kx6O/tfiLaRI3Xs5nd5d68PHtU9zmcncKJKrit9jgyQEDzwANioJO7tfm/mUWrGS7d1fSUkDcX3/q2iWs7HpcpubJ5NgotuV5MdMm26k7gagkuaxrG1P1HgjJl9BNhZIsen/POunozTTFNKsKXXPpQ8LJT2oA6l+RqNIE5xXDpcPJ7jdJ+xf2bH+z7kNg2SzxPy56n/kGiTpDvYqblE0MN5c+0/qIPuOfVpxMkxTyZ/CLHg89nwB8kYb4zc5Lp866kRG0t2qF5qCyYmAfP8KvlGQ2el65A/xW5PSNGx4rfXrK6qRiyqtcCFtpr/9ccHkeM3DAfVjAE+ZhByVBd5K4bCaKe0+FSFGtW4aKa5/f95BWlYJED6mZYD2vMuD/aoMDZIDr9YtvBnj28ocC5lyfAuGk7ySDnLdrhikbrbdYkojj52B+OJCkKHJDQ5anskmf3k0kkIdbtXeDo3tfOk97aYIXvN4L0mx1tTXZIlOxQpFj94lJK+ZDhsSjBYchRlTDNocW4QO+QFsr5K5huODB75DSL/s5caEIrIEog+AQhfiSywysYev5+l9LJeaDaxwHYVw3rbTOLXscVvoShgkp2VDTx+oh9pjD5nBBXDYRSSAMVO39bEyiygaVkmhZ0bp5/PRnOodpAsPajxy9j1vyqWdSTppfGu+fUEGdbBc0kfae6BgGsgFir5MaU8bsiBAWWyefLvHaZ8Zcu5HuqgonBRgu/PzC9Qq+Ggx6Wx002iDf7+D2cpcLC/KuE3p5OWqUTxJPyh9eMKaSOIkkyTxHh+S5mlBDuU+TLCGNGf+VRZtkL+sOGjJ7zQ+ha1ZeTq3OlJsupH+dMZE5jB/Xh2XJvbS44WM0vXhHqAsdibDwGmuGlbHS7LhA3f7peybaO2WtHGSQgVOGOOSgerzsxPHzKB9E0mAWJzPajsWs+ZOAB3o5gTe551Xf8x8urB6ek0GWFl7clejB3vB/zwLAkQkqiHf77P5VusmTUJLofBfiCRT4iW7TrRkfZiu76bp1GRDxn4cl4bReZEyxS1MQNRgYzFo7SjNXUvgAQiI6/O7PipdQPgIGT8nvIQodYVsuC8ali2Tc+LEbqb9TTqQakMbbsHoiI4ByfDOfjen9mqtrXuk6J2AoD9iLhiT1w4BYT01H+a1ZHA2TdLhRiAzUYOhh1TNSRf1085hMdM3pv4okN6wZ8FHquZDeNV4zxmmgMR99AMf03E7SH1r4W+rRSsyRYlsVvzwofz5qpEBtsF6q5m8BEZKZiyQIptSwzI/vtpRdo9CGRaY9Zet8VnG2EsiDPQkr2g1vBYIbE5oszkpkm56UWhckzo8XmV0CKam6B13eCVNgrM6lPgg6O61o4sjkfHinIIxKzKliZ8d9WE+BGGtdPPHER3C9aUWTfUjfAQkSvDccEzybxEVBZITCqyO3QjaAIjw/jyYagratvA+dnKcVIIZiWGoYujJQl72gUNHXGhrR+zUtOLCWF9pmsH+BhCYSPsi24b4uG2H92+F9h5yOWGa/5nI0N+3iXyE1GtlUuRWo+0Q917TsblPc0PUbxB/CQtUdJ+tu5NffG6p+kGHbXu539ZaoWkugcRz5IQJk8S6smDOQCbjUvdeOyMV9CbbafpcBcmHV8nGNsOVXO+5AlI3WaY7avGCafl1ZnNeOB1JzjmTCVZZ1njU1o+Qj5UwnMbPDSHV/tKFFj0eNlQmcUNw4Cm+fiRHVyV3TkRE89YVkuspwdWYgRD1LVy7s+00LmN3tbrv6TOmawG/GryEzN6e/tUalKDqRHkHxO/+T5YWrfUjCB6X21Q6VAktlm9jzEgEeYmW4SVFc1U0+ZSzGIYV1tIJCGFfp5tjP3TRoJO1OQHAWueAMczHrTt+GBUoPcnWDrKiNui6t/YW+fmaV+FeuqX10eu5SVhIQPD/2kFF6i63znrbrZve/b4DeKKKo3z+XrkqelbpMPoUE2MpurYN76OrywGRzl5jv9Ys10rTCoIizRPcAid+W10GxZoQhPNdyvgGnhKqWBT8vTkwVOp1A5SYjcWjEnefS+VqXzPYOBJEE2922B/deo/h1UlD6z9c9CjEMBsHrXjRXhHN+qR5sr/BmgKK3WscxSthGDC9PkJLfe9ea6fLSgSLQCxk0tZCw9Jv2UY1ccDSuTmIVpQPN3jw/rLJZhYvWo2enQKslM55WjFH+k8XCDVHhZPDhQTuqZwH7/QlL343bJZ7LnTac6u/7Pa2RPkocne1HkHrAK1UwaHgb3cw5fVwH3jcsWY2OCBinRAK5UabfEDuzQBEmkDaHrrlt/PzMLrrAGLHfOAvOOBzero7aLvWmWalsnwlUHnL3agOEAmrn2KatjtZQ/bPDmYzxQBh9Vj3HzWRr6cn+/9X0nXHs9l+7yTEiFFUorW9LVWzao8SvCiqDRJix16JUaUoFYq2VHlbq/aeQcReFdSoXXtTitaoVaq1fvH9Pf8/n9yf+77Pda7r5JzrmfVcib1+iJagfSyjY+ixdgr73OEcrccA/kthhc4UoPLzmzBzdixM9zP3671d6HA57P7r0t5g+oNzxofLvwS9+S5/ceh8P6n1357H4gqZbS9ok1bNdz8CmF/tnSEPA8XKfe61nu73XfoHSD25OliW5cNNSQb1yBt+pgpkSkT4jkRe4eNtOb6BFj0Gt7XW7FUDFuhgKUMyun1fhXsfqZ3JpMq6T9h1ShgGXY5831C5NJbYSrZ/+/mhyt6nrbz3D3vfqp0fb33PjZVQHPpK4Hu2Vend2nq27Wl4+JZbkcRut3RaL6d/8Jca36mW+pjLLUMttW4hsBQzuLOiGvyXm718fKihop0v9GJ4bqNW1zZcyDKXeJ5EFDt0i1jzApJLfIq591SXwBjoTmnUlydnk63n0LbAOe9uR4rSfYwkFKFOf40+itVL/J/ZxbKSPu/FpbUCHlwNP6rs5u3L8F9+vRUjv/Bqgwn6knQzD5HubWh18XsxRG0ltiJN+w0UzKUa0ha09vUrdwhH0J9mRHyqRboMFxdDa/p4+0rIcAWSWgxSSxQDTbD7Dl4O1W6905d4naWy8kY6J6rle0406XLOejrz/FfhFqlPInrIxqsNLHXT62fDehcLaAn8CQ/LP0ldPBUKO1qOlhw8P9sJcb737KjfmpIXtygJsX+Bkqfo1FKDEdFACzq8uHDVjbRJnbahYjHG1bU1kaPuw0xahUO6vgroP3Rq/xjVQ/ogGHFLKaUKvOAw9dskm+cBfgOykw7yC/72yHxKuve59AVxDDnbtFnx2aJyCJXyNrd2t9UnwNCZXu30X6Yf6ly/t3k05KKrQQHOWgy7WOZTB4UKNQVLCiVmJhbNZEasQrNdz2Sluh2hxCrnoUHrkLPDoodAwaW8jo1ILo+ec8r26uyer6tdvP5KxVuVvj7NlyBaD7Jg38lPsuaM9V4IWO8cBmFQCqEI0InKyVZV/q/yGeYp9Rc0Md9n63YEDjb//d8g/QLJG5l6sZbq+ZAJfzYnE8DQZ/QKQDd8ShsPeO9FPpy0yTxb4bt4xWMtc3Bxsnih3fOu3HfUQN7R1MoXxchDl1O0wCDZfOfkIPOCGyWpl7SaYGp9/TdVvQOXsJN+cqj91bvod7lDbnQYBiEaZcwU0bZp/nGfuFoVxre+sWFA5/NMWudlL8Th7g27/U/Zfp9MDWgIY6J79kYkAJ/e+6kNqKklawdQ2JT/2SyuTqsnBxPAiAm9dSfBaNVX2DxeXADcwsx/1TpuA1xLhiYfcGY8O/+zrh9nZTmcyEV0KtAwsbmu9vw0wzY4gLY01QKK7U+W8r7Ofxi9u6Iodww4sJcUE5dtEsZDqRDoPJZsMdf2q/rg5zAiJTLckSlkKIZGEGZLjwEKVaLJUYH5P2LZPl62Twt/HVTeeSM1eWlkYngGslqK/iv4Br+xGqyomvtJhg3rzW8hRIa9m6Z7TrcgTfiZffItWvLjLl90qgVK7LrJM/jd0GWQPm+i6L/wbm7Iu3ixsVISDUCMnzoIzjqcgwFbMqCRYnjwyMY3UG043f9Mctpo+fp5A79nb1GUWnQs2GyBKrlKLW4tQJWq2LI3sywqR5wKw6D78usv4jkC7fGBo+kp5Wwf9EQeDoT97gXCs9PwNb4M99tDlkJp7fSgImxwkOlyhTCCXQyf/1qSDCHB3skc0EvGJXZmUdHcGD5dVyiaatr52ERtFi/WffMTHAu7c5CBh/XcvSlfTZdTUttAct37QMm+YWVS8BDb3c0w+arsm/LydYIMU6sdV1pcd9UiDz3d/sFM8xX9p6p1C5qlGTMSVPgiGgG4Q10UTosXHQhKxDrzLVc8QfP4jhlOs+pw//e/zhGy0D0GaPSIVs2l3pUa1K/Hr2SnBPAtZP6mriVzCl/NXZ0i8903srE1HGlIFMIwQA/mkl8vvSK6DsiY7Kyt1Ybzp4YzTNB9tJmaKGzsADOACI7AbCC78AsQ4GY2kEzzy2XmIC2mpfd1m4gBw52cQGB15CibG9mwGpB6hr+LAZMufVBu93tt10x2BZkvvPei0l+uS2NYMpEDVYRQ7rZIOFMv45RRc42/gTNsfXhGReU8/yV4bq5k+p0u+969sEW+05cbRlUMXC/yAfRxN/ig19h4+RngLyCIWJmvYPScExWLKqDrW7PbdzH9t+q3rldakvv2pvjA+i6AepA+j/4LGEDcw7jxO8C4ALiRstK8285QeYPQD6m9aR7dJ2UboLlrsPV7x8vXx+Kv7YvBtouHVtNL0knVOel8GHH2qSte2UqhYpu93IAnFKiAsZA+Af9hocYXPcjqfacgckcrmA0GqAa8Cw6V/kCtkA1eEsFc7V5NBlgpVhWh+Uv7qQf1ZVnwYt5mSm1rhXal9MQIB3Mcswr/cUPbpDexsWGcsedc5rgirJUzaObdFqCUkSgns0vBzk8Kt6RGFs9+PjXEvRMB97M/E1QBHL9qY2PG8HwH2fATgFQKFaNZoKxee8CDUT5+EGopKgqKDK1VGornE+3Z502j3enwBsilu+DTiFSaD19e4VNdtJMaB0w90dum/5qieq05XhCuWt0xPlBGE84Q1VfQVjFoSBqnQXddUEkul38yAMI2WPCsO9RPjErJ0KTH4Od5DsVXIcnLKmvJAJQiUWVNFpAQByjvp+Lh4KgPFdVP+y1A3faniMjYvcqtaBrVCZjOJ2DEMd00F8FKm6L4Q41pDw9HZKXuOkfsJu3i7eMbbc43qyZhMA6inD2GIo4qOWx8rcxEdqBaEP7QjJRdYVOgCY8RhGo4nDZM5BjkBczW9t5Tum0aOTmiGGmewKktQIWKoGb/7dgElyBDvhkNUJL3/Tcdbg+JbtRYgQ9v1/uIzVJiTeGreryelKOl0aAB0qjRL8hhlcWPU10X1nPwtXfBJxQs7r75XAOUZ1j8Sm6aqjcY7PbJajycNrIkI4IKTYb8QpTJfPXO0nsF9KXHht6MQvGYQ6iIVrY0S4zI8QZBsOhh7wkAnWa//xyeOCXRHUS543rXwfqcxIjqZnSiAUNqD8sxCl1u36pjSvDw6INPZR37jwMirMJsrp623ORxzWbH8WJuL4MsQ3+cn+xkXnpWTWe/5E05+zvZ+pZcgweH4aHCIHMy3ZN8MUMCIPHsdcwIMF+g9kk8UBNerE4vAsk9LlEira0Lmw+Ce2bm0PCHE6B1LatpQfqpf5AMsHLbhOhjvcqr7iu7x4X/24guTVrbs/W2K1fOHQCdPQ7120H2NYBExYYiyaxk0YEn2iY8XmTgZavbu8u+KVaSsJkGuOgRnl7FsCQAAiOXEBlO9jmX65p5acfynLPvopYRGKf0/HaQWMBgiVlWSok5zlQbuNP37A4nlj6SDqLYYRnQdtJ2cbV2ezkbIF83c10Jrapy7iuFvSP7+suMxt18LxDekaSe1f5uShgBLsdDwRSQPOkSjP2gw4DIYQy9BUDeh8PHMIB4UYMnYyKadqG/VE+2jJWY9yyR4nGraDzsfo45sAQjHvHAclLEITS5e+vWaimzJPSIJiUlpbAEP0BPhVG7Y//QfyOUONemCfTwqOEietfjdlFhOzE5ZQ8+Q4gyqR8uIHhgWwezstisZ+sZ6ed8k/N8o2/f0cKzne8EKp0lBm5UKjS/aK1BqRoghLHnO7r3PesF6d7vOelZj6Zt0oD8osqsdzfPDYcfMqP9pN7oVbSfHPWS3i1OAWrxGolxMTCuioNdKKuD8ChTdc9HwgmmLvCZmGySdv4SQb7I1xu/HInTt6/S2j3/B2sj7z+5DI+QFH+QrGW7u9QWsZ7xTEKDiQX0aKlx0vqZI4WF6ny+dGL7Dmfryfm3+Ab+nWAuAJ6DDM3XdtxTKXmaZOX3uXYhcBP73kDus5LfVrLv92EBjcQVttHVa4x0S9fw13tEVgARIj0zMnfuJbaPf5fiLyW92kDYT8x1XhOxuC8tGpWN13/haZTWs194G81T7uHhC//CCaiDfHzm/3MfMLFOhVZDEaBQvUiAAJC7pnGzvEn7DmlM6SNlMxL4RQX7lqgGcjtZzN/6Hn992R1cN+NWin3BJNczU4tLrfGYVwqkqJ6qAblZMV4OxNXN1Zon/tmB9NeHq28h1aVtvE1SF/Lb6Gdi15EErmMSc96flSx+eVQtjNrM0YaaDKNGU41LvlBjPR2jiDnPNGv72BoKjHoPX3YUqfEpPfleDFSwuXd+vOLdIypyFbMsbEquPxhU1uFAb9tnOKsdFf541M0BrWQ3B5CtmvwGLpuL6SbWBlKdL/ukLWvdJyU8Fv1mcbn/CD3Aj3QCyyKX3ESuD4xHVD0US2K+e4QKvebbWJwC8xKkIcSXFWY+b0TGN70rbrWv1Xobdibnf7H0GzycAUu0cI0EUvhRqkU5GJ92SpEQoE8aAIdQZjGGiXS/mduN7GL6+NcWqL5zmYPXA8sAn5PtuthsQDtgs6zOeiJP9z023Xfi86UXDkErGnZp+Wdfj5884ATof9Dgj9kAV7+B3egATLGpAurxCdtb+o3JSosApTjTl9dLTKQw+RHZdsW9WsLhzC0CmpHs+26fYHwhXOd47cuuA0+w1wJnUOvSIU+Rh4dHAwzp/usf7lrGzdjRm7QuZPphoD5Ab32UWXmLBciABRszoGvd1bb72Lz8fowIuk+THCfqvVcIz8/+mr2gYVpWgiTukrW5cOw2+tdACmz/AFL0wFQZKtofQMgY/hUpkQ8Hq75FzoOpajSJzRnMSlmMb0LLnHTjNrSAuTO3+62QhGOxu+I99XSbue2kblq+IC8MokG0weiSRguTKXw73fteUROX6/NS3StFAOHe97zP1WEcDrhk+J2E0bFFu2jxHDdw+SfTVDkcZ1sjhUd2C3o5Kp8Q1e7oyFJpDQJ7QA8BfUazPwCaH9y6qAY/XJOCC3YAh0US3kwCnWMUqHqimFbwHKh+pWLLy+pedsjF+VUqZCYDokXhuNY2OJ9oKQU4cgZ29V0OYc2tuV8W2FzPXt/KOO6mrE0eeg18p3MYYBCURX+MJ6AqxfLNvdugLCvNkQ8JFGGm4Ofwn8BwgUEq3Zh2DKcjE5fcm2zgcnmqR6NrkPgO7bVQYTJ1DpmdNk5hs8gdTo95XcemtKRIWaUkJFmNlreKul6MnssLW4zhF9Vh8hEb22aSn9s905dsGfuxEqtmfQtfow7YHBpxl8dO3WkNnaMs0FM9oEzBd2Os1dJ3HCUNmPzZtKOq44rGX40DmRabFBsDYasiuyATDSDet0+87s0SdbkwcknPP8usyknqXK8QNqv7eTkYnx05C3qAvD1o35AlWp9jTQ/dvZbPkJaPCS1eJnJzmU6F2n+vUSCuSnWLTVSl77UzSM796riiFk8u+eKteq82NXUWtE0h12/66K8KnfJR0SM8gVlgDRAsJSp3ORAbWno2RWMJFMLU2IaalJl3PhTj7tlPZhZvSyhoRgrqGVWiikdVODABMcvV3DrZwAg2Ooae/CBxSzPn1LVzyAm7/85y/KLpS7Usoed19Q0N4tXzFCzMP6TgdnDf8L8ZNMlj6vnJpZZRKC/HVP7S7UtTSWQZPgEpulRCxC+VqJgu9X4EcNbQH4853OIVoX0SVbkMh9aD/rUkgt8W2XS6oTgEIoqXCQ58xG/H3Em/aXui9mgw3YxRzhkBQlyybmNmloUfg0/+xqysrcmFNFGwWW/zkeqfb2/jAdTl6rqwMSmwmGGu288qJLfJUNWDlTJho07LUOEfaD8WYGyoJBW9v6RRnb8n4BaLmwm1r2q2nbfsV6BIVIKTqn7aJIVylABZXQkJ9lJRDxxZXteA0G+LKVEv7q2dfWkYWrgZ2HK8HP1l/vKsGabWKXf2Fe+9wH71PVZPJoOzMICIv/mwOdmNqzwYkYe/Ss6xVvbdYA8V0Rkgpe8CT3KtgQTtYKDmWF680A9jBUx1OgJUhhHlcCljA7eDCCU+QNNEvSGjtKTJnPAE9ewgc8izWG7FfSXgUQSH9W5qz8BAWU568NF0H1gLNmkTfDj+vqJhLWVPJtewvF6pGHufH1y+BHmg22r3+jGqMHG54luVXicIhRSdxUuyrF3jTo2j5nF7og2UTfkFgB3qvRVxG52QHI6z6HTFSRAAjP5gvaXi2598H7zNX/EWwzOlTdvEOX7+E34gAlgOoehkY9orvEFVLRlfOSV2niakWvDUea90oQBtfBfH3faSFFovCdDFf+PuNKxj0ntSKl7XW7vgtsnmYN8sSw+my8OzcbiYkdIF48AEuAnCMTUtGPGxmTagwqTTbeY6ufe+qLZNpQM/YMP4Rt2rXLdhvF2JXHmUj1ht5ZUTyJRC97Iv/DpRdN2ks8OwzYF3q+X3gg+iLeTvaKYTdZbNX4rUPxfsI2kHTP69VKVcgwNl5VN4INXyXYDtOCUKnihvJOf+phv+ULvp0eTE5UnaSxM3zOi8tgmT2aPil7+yOxtVcFE7S70oJ4Frht7JQYfmUcBkFZ84KNGG2q2Jc1R7qwMD8lhx1oDZUVMRduKMuPFTS/YMW+VKw9B33firvr2beKFepFYTsFSDCvlt+VqKIWxXZICBLHJUcodqSZJ5T9yrXNgC0hVuf3b7VBH7u671DDdEucc/ZZ8dbbW0y55/znmu1vHyyu/UsQGcWZV7RZNEI3ZrqrK7dX5neytO88pnufmgKmyugZwE8ZP8rN3ByOMDcSqZOkjcXGDpdwtclW+tbNa8BMDv5bbPaE0eFlhxl556gf0jqCyrbxMg1lAKiEELk6mCStK0BgAbtW7M4gbhRcV1sqHZBSnAAk4QA1aWPrfg3MnGuu+jyqNXcMXa2tEHmhHX6zH7IQxfTxmKfM7ZFdYuq4xMvCrJI69mK4jtkMN279TwA7fHlDwhS78zexPe+pkCBvPfyuoW3PZn3CtkA1Zi5FOC/qwmbdLwV2Tt3ILPeprL1zmyEnN1Yj+GL4s3UY83tkVa5Tydduloj+TypHapipGfvznrUGUgCpeL2Kyd9UzaJq4w55+iLYcr4wyUu6itUgOy1qH/sGBQC4h0QwDMBaRZjGYvS9tWEIR4Y245iiS1O6pZVzQ0oNcDFhiyRE4AWSUZQG9b7fA9swQD1sEGlnNhyEaP8bVwtM9sLW49fLKfGZ7Ow/5za/f6cqB/7HTd4vOTLQ5rf1u/oYx7zr83xt0HibYdRQHEGqqJAdz1y+Jt/MTFs/X0ujSv5dc+SrhhRff5WoNs3IlfxBGPsoOKxKVPhjEZZBLvjqywehq1Z4QaZsMao1Kdruddp92QsbexHpIyfPHpnqyo+EAA5EmpruRq8Uh4GKHgl4k4mvdARf9o3Tel0sR4EOGQOgnyHrurhzpkji/IR0qSJck5zfntsq9ARD/K5RimXCCQGRv20bjSHScrV2zR04xFChh3WwasJqzwPj/+6r71m4O8KV+ZamFQS0nuu7di1Y6mFpnVlneLcTM1AxPYepPsgD7Y9U0QFmJ6G61BDStX3qq2r7XHb0o0/WRL7UtpA9wpIHfiJMruMsbrux84o/YRZtQOMgA0UrASOXYrDkwkswmDLC2zEkTyl+R2x+JlUg7x6/iKdN3ElSxrKO8wnUQip0DBAxB/n/NqENTHJOgDge42ehNu+rCEk0r0Wos2E02vtJzHXP1wlvoLULF7ZxvnymUd+Jlzf7J35sbn5+d/1jOyl9ZM3l+a7kF5+UJO9xZrrqgtB7qPZ44StA4IqNQJsybmbf0NaD2EIKcCsKRnwLauMLMSrJ7SL83hkrB19/yGjpjvzJV+DysDS+iPv0TNJMUMiSSZdHhO2yRU4VO0rYFmy0V4lh6QFry0QC1u3OEVSIwfnENOyBfSqd6t2TMdj0OpinvdyoXX0E91BewpKjovlfTTI4u5h2dkZJZE16WGptU5OOUeZKf+PdwcMnMvq1n2teOtBJhErpWvPK1KtWCq/vz+VoWsy3DWNqjfD+2YgProMea/zVhf6zJ+1332o9VEpU8h3WUByzQU9TZQ8Cenfbl6A8jUrq7pZ6VFbXfGs3ghhU+/9TDuPN9L4HXbLMbPy9yu7ZqnrIks5wQCO8NEWUkpv+LQJY/R4v6hhXal+AQEfm1rBDmPNV6/1pu08l8AnPbaHVPeMl9AX4MZuPSJNBC5CSq9e3OkWmYVfFU7KzA58orxr8heu8ONcVHAXGFGYFR2w7M9q4XHfeLPNZsaxqkZhl/1/aYost2XvIHCXcfHe+WL1a7ZWpuJn2yqmNOVBq8+TQjshD6DYvKtn84H1xVZ/85iXLKGtpVMOxg7K2cZOKvHUZlqMOSpFzsB8IKw3u+3uSRYHGT/6rmagiQp2jOlweT99RyXUNFZeq77hyLSoflIqW7jwCSaO4DgMdn1iq1XzVg6dSS+hoWmmTD7BRfOiCBBuAgtRzPXRRJB3yxTd2l9khe/eHjIshDLLOpU4/gkK1UhFnUu0zlwF35UBYwoZ9DXZWNIVN6ek50NmLT6x+Hpov1viMg4KPGhyLgl6gyV8f4dKkLCIit1PbTYLjPlP7y/mP5ts1WSGztHrGEGnBVaWtxcRmVu4PYqEDWH+gqOJyh9RIMs3nZXymZypFtBrkwpkMS7XXyejQ7jmXjQ9TmY4j54gzZS1Nf70sDze2l5o5tK7AmFFmq0ls7PucXNB26WFfL5TdleNTVzTJjaeiNrqiktE9MiooJRrjWCll4Tw8dITf3jAPWBYsCm0DqTYnhat8otrVQRG2irSbApoDSlHEYCPBrwjxfUN1g1mALAQca3TdrBJp8hWX7v/q2t5BOgTvzkpJjh1CLI3N+wqwN4kP9g/Es+mjBWEtMNIfTeFXbijHdbFqGJDnRs5B5zbwk8tEvGrCaYvqXibPf9U/W/De0B9QRmFR1n3/2PX23JpGy9XTampSCgIhALLGUEFaPtKnu5h8MjA2xBpW6ykomo5jBxfsdf8RuNIPRqxr45lwhCS9xXQ7cT9GCp6E2ojDucx0LYyqgVIO4F/nQ5IPPEWlMOBFirb+Zbz3ftlD2VjyipnUWEoirkHplEeLKHgEnsvIX5oWGCKvhAR870ZW7HpD8822smL8RkpDyr39ONUKNcsnySmNZ0+0gBFa7MBJ4WFJDUudaSLmuy66D7Mi7jvTkqMhRPmGZDtPQGj+dFpOyD7+SGGRJTHOGdNbJfBQSoUk5lLnBvSwtWTA4y14FiUhYToZLT4P6WzndniBqZgR/olTO8yi5SHJyaAX4Anuy1I4HKSHRiDjjGRBMaKXQ7lXqL06W5WjjW69IRqGH760s+65/ZL3mjNr92B/DgBctpLe29N3MCUQuiGV0Yb67YcYRZvnsC/6xvIcQbCYeo4EoSnT44zrfLXCGmJHK9cnPzQJaxE0WwxV7Rvgn88SLjeBDT/WF7ZS35SlMAQzg9E8A0q98nnBa7BvA2xb+acXCVpjYizpxOIVdnmCXy3bLtgAQSHTWaXQwvHslwOQwk+1nD58DkOUFKhiUl6/SV8pMtNEhMABRPuEuPrSeDTA/pqM2ZEuYzvlgqSvdCSjinO9mySqQfLDm61ukWi3gwIOiZhOPx7YLMKRNBqH6Tq+wi5RCV7fsV7NUi117Yoa6FninQDAvx9j/b/wDIWWNeiYWA9apstNzGvjjapoJMP95xNQ+nM7HA1bBhOkYuay7GW5cNaB+E5NQQZH6yiAo/ccaXPxUkFzMAIUn5lioYvNk3k0XzlxkA8KHxPP6AJ2Az4GSBp6ufOVcggIQ3jUAjGossB6rAXqg6eEBlSXU+K6bIgh9i6b3E4A+U2CRD0aI80aEsRahyvhATcuzm633qRk6Iu05RfsInMezoP99gxN5/lu4hiOE0lm2NDePwVBlXo9Ss+AwAJM+ZdVEzwJdxYHawEyT5WN1EyiwrRR4rJ++A4P4vwt1aos2ks2Ga2QH6EJEOKrbGGe9/XI4Xvofp9MMzvEJ1ITzW50CNRZTYYCxDNWhkva4qv21HbcVgZ9SKl9lp+3NwDmCpH/kTXpL3MnPzNhnU9+R7RdRkHhmKgTbV4FEpiUoNACwr4boZv2hZ9TsK9yib0z5NUBCD4b2gUXSdgmS2f1gQxnWKlUdScQlJ7OJufn1RA7bKMW9E3MyOISU/br6eoXmFf5vSJ/baGHRDOZ/RljrlZzjbtxQf/WyQUiHyiYVxf9xgfkM9MtlCkHFaYrX3BPBQKbPezwHD0lfwmfl4iubanxsIJgso4b9Cn+T8r6C3j5LhDUS5f7NCaYwqm00VIi8XJWSG34zp5QWUn77S/WJHnbRMnMAVwU/uTxfw2LFWdw5ysV+3Fls0ta2lCtUeJ2G/cgy8w+u3gK6y54z0Kji3vVm5Ty8q2rY2JxKjP9rPIsGCDi13yq6RpZHJ5KhYuSbsiHkVttYCzGAXxIOr8Sy77hKVvRtL5uQZYmjB1NfYji5bXAnMFsSvr8NR+WNX8f8vOSjLo3pvsig++UvNtuWwkRZDXC8YidFXMuV9IypsIX1urfs7zLXkG1pvuiQoG9WUEkgzdb9T1pXkofs55xf7XZaxV0NuXlRx+cZbSy+uvCZSpzjAXKI8HQXjaCJLzRMLIoBjIppFP3B4XuK6JUBUAEQe+uMiZDkgaGKmq6080/cQVvz45cbW8sHe82oZ/0cRELorXh7qOOVLH5l34PoFYTir9DedOSVCHXbejbfHjf6B2d2Z6GAxF/FweX5tLn736DQ01D0hrVacjrjVrej27/t2rlN1AN8AnGFKgVfP5IcV5DrLe1RhkuWB615z5O6MoVMzDO3z4G3ZyAtL6XI+IhUJcOX4QKfzIKr18U+3v4XpVnJyomS9bb1OEcnE38ZFeHfySTbmT9ClFTw14dHVn2smmmIyhZ7U98Pp8OzMmHwnWV85j8KRn1O3A7jrfKN2ozXvoTZl8DCFqb0jvea6Sm1oQe2hzeg0I+CLNtfVFJfMGpdpFQvn+S6zjhouhxhO+f4UQtPDuYlyzVmC8fpbdd2njJBG/do/ianOszv1VrWzvE1O87+3E3m8hs+n1V9yJ/MEfVefVqcd2j7VGAchLGjVpxl7p1elNqC7nQ097QGzLMABX+7vszLit93ynX/E3vSd/ZOvxo1baQS4l1eKWwlDo92E/vUaM9RJ/59tr7rfyXbdRTRzGiBSkbUcyBjVuW+vDa31nFRtN5EoKsCLt8l6I/M3MtzmWnjmHTpo9ZxLCHXBFHH1Zhc7XuA44dDiS6KJmeidcKt2Ct8KNJgcMK/2yKhx1clOkWP9tNW6OmHhoOw3LzBrXzFf5XGylb5dZfObbtZj/kiCCcM/3+dXjkvKS9pDY1AQaOb1YVY2uC6EGMVAhU5VzxpK7LIZ9QqNqLSrhBGD1MIIGoLNngiivdrFqY/k8TIFE7GfXrEqpwVuFLcgKOBEjEs46IB53Xjig58tLsIY05KK7kGlWb2gcogAVd9ws2GTN488EnCNf4TMkmKUdF6BkOxb5kyTb7KsnqVrTzduyn9OkbNRc18gmYUT+ZvG5Sy0BZtGB5UT09RZZj2qcPRpShwWX/TKrxVFEko+vA27eaRHy6HPNMOCke0hM98hmlEd+cyIgW4HtjzE1+xUMEu232w9XZVcz7KraN7vNf01f9mU+/xFU0NC3+VIp0Jnj2th+kT6wv5uhzg1EUaNTGRgmINkg3I9anh63NzY4fmGD3udoQ75TqOVJ2HDThbYRFy9bhIhuNuPNQ8OJU/YlFpbijgM13+e8YHiSte8FyW4cHE40nTX18PUrlWhVFy87zRR30Mdeu6Cv6V/WytmGFQkbGLZclwCBjig/nuzmf9LymIpnyRQBSP40VitfnocE6+bZVtlRAqHIIj+U57kOAFNuUs/8aC/1+TrUjDSzoNbqhgy/seTDfaQZvBtwbNXB0EZCA3DLxDABA4dGoymJXF6SqJEv0PqYdWVAbyA2+Qco9cdOdZAgi+GIYj+BpEvKmlyKfyKeR04beBGGuAfERaXHHgZlTjuFmPWnHHa1C3d8zwnFA26dAy3ZcZfA6/JiETUm/y9OszHtwjcPGXdpWVZaIX3rEw7Z6Zf+geULT2tpWiGykeqf/I6mnY+ciknICrhcXyVY2moJ0YBFC0KIHrBwsv2UWj1aYYUAMuUSB7/EqSWy5MzZZPL720WdrpRi5E+C51vt1nWoG1ZPp31nJ4khx0maI0WYVMJkwoWTXtztmX492stEYVpuA2ykTCAWBDn+FlV2LJdPEi1+IkF0mL4QWjKQw77wveGtWEfr5ykT8G0j98L7976c3owFLs9XVX4v6Qk9/hbz8hfikRWmgs6GJC+rwOJcnnbuwJkfN4PK3BTknwjqqleYUwwHbDCi6FS/ZLzyfnFiw36hYTgQj/DCDn3yufIYhjpCxd1jxwhUxatDHicHmn4g2Sz4jspsd1k8kJ23TBvAvzw6MvzGY+uC531P0YN3V7zChcyE5bTYjQBHheW8Z6i+VG5zd5Wpgvvt/OSLk0S7Hdafltf0jADovoLmoSJS9WYfvmJoSHhd2xLCjoBSUZFsHfkT+dTQMbybhiNEblZm8fNqMltYwahyTma4EmG0+x7Kfv1zNQyhADK7jdeibOSF56uMfxA9hpo4J0ImCPaviDY3gj8w9Xlm1Fqyuc/kUpbtN9bS2WyOcMBJQx9ahDd+m+QW9S/oHxQzcLLYlMktMjdtaIBp0tMZ2m7nFWtrFt83nS5gwXoY/XEiZfMPIEux/8xF0644rUEyDlZb/kBpQ/5FBGCkboH15ytshx1H7w7A5SSMaiylJb87EYaUtS03rbfz2b1CI0x3Mwp+kaCvyv2Z8U4v9y62SAqkylKAJBy7HMLksbQEwgFpIigb8/+UuRSXapvvuVtXvw4QmUs29m+308veeyAJCnzINF+M3Dzkd4kYlI2TZORVeXv91zjsCjfS9vFm8/+/ijMtR8tfKT2/fOtTO6++0KC4weapp9VilEMpocOVFzqJngDVHlUX969IxjJNTaA8AvFyDcVL6j8BJluGFVaMBBSPJzXb5MfV4OogQsulDy8s5A0lFfQCCg9qI4bz3yRoW8VImzSNvu10ogImXVJNPMd8d2cwLllqgbzBlC0yPONp9WXIvr87MS9wRiPdc24nVLHydl7hZO8m5v4uKZlN4wQ+N04wh1VtuSW2lR7ILTtoq88xb6O0sazXaDwWvD8Opt75zCia5XaENiGwZy/79mPKjqinKYGwgDlltIrZPpg5rxyd/pXw1Zm0jmS+tjOf9k1OHZI9YSw2E/hFAM0jNdYkl7QXlmoMq2w9q4vApTuBwnXyaTrtmwbPQ2rIGOgErPiDqMPwKkRGOBszqplHUJoXi8bEip89Fcei0gJrqGeHk9ixHgDPKCEdu4NYp9xiVFRgET9jH+dUi2+pLwha/DZxsx+8srLiS7pyw89OJJpmLnr140f3YO+/O+deTjbik5F5W+3SNHOz3KZxkk5D1InQBHLpNof7pp0Gwj3L2KA2oCphWbUF4su3MCEZ0ZZqzWCaDAxlEK4ihkTLvoRGVMV6S7bP1HSamISEiNbFVhKm1wOCzrMqWBtXuCMpka3oSATz5kdzaeYm2RkDWIPaHBTocyPI+zZz4k7xR+YfhVq6a9QwCm4a8dSvo4Tu9IVE52L92j8UYBL/n7lUO+Aok1r6Zmx2DSjuHGfsP+s1hVLvaB3WVxG33IfpnRP4QCuBwVAkoGFtnM6zmCSAVL72ZJc3vQQUeku/zoON4bZJnxNiQE5cLELWFzo2OQuqEhNqehskx6oLc49fm2gJ7UmY6owcPWhtNTIOtYvMm1F5KObBS2E6b5WVcy76N8Lzyr+F00WiY5lHbGHO/FtuX+UHj0KNmwQ6Xqt/3V6HVvxjLO1+kY+hWdhcUIa1GaIYrLM4eHkGWu5//uuTe2eHLtQ7AtZrkR+i/3AQ9HtMZIEuO/PbI4EhOlbhCKWmYhaNckusGXFVf3AGVXIUb8H1dItgqpWP57/3az4M09RM1S4492vfcG/vuh4By9/eh0SvBRKewzkuCaQ5/0blmJUUXtdPMH52W6+tTFUFJrMrF9DNFDuwbtkMBDCSk+7Eeq5bA6ThLoJy4rWNZUbdfuWX4FQH0Me8zbZiJK5tdIClsS7dbNY5/RzJDYyUoPa5KyqHH1EybZyNTatz0P0z4XPuvx8ROsux3GgvIuBm2WmdxKixkTwlff2jAg/egqQlYNXiCBv6433Sp4jzHcZhlTqNlD66iZ6Jh8nUjjjiRNB88wfaqZZo7gKXwiLwcF6pT2j6tdBZaiyo0da09ejHG95T2n4W4W6PtZwX2H72HRZJG3QyF7y8j25OBrku/lOOWqloY8VKdaR3lg4QLJi4fjSpX3T4P5/Gv+W04dFiCXCCnRvUQtEy5lTE0CvWbDsVHJt/wifq3/q1WYHX8gYcmne97jVKl/3qPXjs9bFN09z3vc9202eTz+Tbqo6+LCzc7bwzD5Ri2xtZXWmICXF+gK0QqBGN6rQK/p+SarUQ5IITqNk/T4pxyySTWGIbMub7OIGGjQTKc/JPuQ5175A0lVzRoPwm11vg8HXTs1N1vZb/NNPfyoUvxJJXNqwNs1G/9nf339afSEhIUFHrGEmThj29YuJ+vn7H/+iPOuVlZWtRc7FysmidJphQqEJAn2K+XRoZD3jw3BhEQtk67VWLdloXtEekQf0yQaSj/fuTpLjWgxJdbzuQVwkpqH5/U4DP80exwkq5nnWeKMYOyD+gaG9o0Rb3521negYp290+IXYeOnOnpcvX7b6ws+qOWFFT8/72QkfzGiwXl67f2uNy5PG2hZ5erznoPbl3J6d4cFmTJ2KBWioYGleUImpqGanP46bCueV5TZ2bzL+Wa6X/VBLzbd1WTmZrreaHh86Nt0terziezknTyKP/JeHVa8Yz7AUTP2IfvTv+JS7ZfsD00+++LO0o8U/f/5IF1pvMpY7OV0npqenb85qamoGl5WVhXhROSsNe8N4oLfCoJ7uPMUj35L1EPpTpEV4sXoEZkuRtimpYcqTqSb1uMHTeueFSImBYkNeG8sjwH44vtc4Q+GbUvFPR1uqTPJ37xkJo95Ou0ojiaQQK0vLU0KJdSbGBW9X6eTkFOvyBP7w0aMQdZ5qlx7d22ppsmTaGpO6WMyvskfmhfeGJtERpYXDsofFnR6C14IF6Axaeic/gyD0+nxwwTuaHxj2Fbmp1qfkg+WAtS0tZ5nFxcUmC0n6+vp81y0H+u9iREVF9/aPj48TlO/cTtTBlN255tUTG9dp+xFJ2tk8Pk+J6miPQMiBNMbkuXWu3QplX4xW65gs4hovwcrcSPg48TKxA7Bfk9ap/tvVYu5+rsZq3+bm5pfV1dWkZhtTU1N7eWnpZ5bkLs3PRsW/oCggFBIBsfKjRl2d3JXGsIZlC5w3weXHpkViZt6zdH1tTFM4KLbCfa9IOO2tdzGSl7ApiKCZQ1B5ZajkbQuSjRhr6+qS7tKd+0X59gDcnRIFlJWU/jZaSuwYGbNxPl7+F6IhN7YsWewKKcFk9v3eBQrTO3ycEm83YWB1AWjli1kZJ3/EPVKaPk4Jso/ght2LG5VjcbhtIJo5ZPr35CT3w4cPo2dnZ55bNjinRNbZmZm/oY+tU1NTbUa/JcpNh80XIT73/kPF9+B9fCmNRyaJ6bZ15r6BUc3jnF4OvvH9p6x/s3dKz1Szd8I2j8N19CGsGN67v1t9N62N5dpOT093jirkpPteDQwMGLx9+9baVNh7PBEZw0Y0NwGqvjRuIF64vQszWNGt+IIpPdQYZi9G5ruipNcAL9kbrjQK8OeG5XfTlfv6+hricDikjU1IaXySBFrxzh2v+SuJfRkD/f28n7W1tYV+lIAtafTcXtkKJHCsfXSr1ArPpBZbmExblGd6UzMcJnm1jWPxV76Wa0Dj3XOCeprk4nbflcTZRHanvQju+w1s6M8/5C6Yf/EUEbPLyrbrhKPcxK5M9ItRmQizC92WIV9VpUarvvoDcFraD5Z4MQ6Ihuevt17BaJr+U8+ACb7HdhMfbPom4RaHTT+SinAaU7090i5mBO3bXjnJcwkIGd7++PHj92/fHC6WlsgS1+2djqYmRkbu6mK0El7C1Q+FgEl+d0XZheorxsoREriU6WCbno6kkkQntk2JP2TzHjgX/bFQS0kZuyglCA2LkUpfz2bn53Ehj6WruklBqmq6laaEqZER0u7Sb/VRDulxTLqMoS/H5EinBv94FqcRccbBMuV4p+mTZQ0rMIbaS4YM14IOFlsghY3EYBdbP378+by98MiFT1JMDE15veolaX5+furznLriQwNtBNMfpwbZhBQno97CyJ2rJAEw12PxtCygXExYy85OKAQmUBrB6XJhyJ1OETHjrEpKSjl7e3s7v4+OzDUuIihnjoz9cI9gxnjWMfW6oby83MbBmEOcejcbZJI6NhK/pgmc+P2sL7n2lKdBwL9m03Su3cvPT25mYYH3/l8+LBb7CeEo3xdpWFyVoHzxcntrC/teQtrI2Ni47XXWxQ1Mjdcrua9HcRATY9LjkbhbvKurgS6kxzjcQLpmrult4MmYuJqfPsMtBwbio3MwJkFdH3CoqAigPLpaD/8t18CE/R9QSwcImK6FCxlzAABSdQAAUEsDBBQACAAIAPIJbT8AAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s7V3bbttGGr7ePgWhi8Le1grnwBMSt7CTGA2crYs67QLtZgFaGklcU6RKUrbsJ9i32JsCe71F36D3fYh9kv1nODyLFEnJtpKtgUTUcDgc/ofvP81QL75czV3lhgWh43vHAzRUBwrzRv7Y8abHg2U0OTIHX37xyYsp86fsKrCViR/M7eh4QIZ4wNuXzhef/OlFOPNvFdsVXb532O3xYGK7IRso4SJg9jicMRYV2u3lynEdO7i7uPoHG0VhdiIe5I23WMJdomAJbaP5+K0TJl+f8RtOfC9SlNC5ZzBpk7e9eCbm8oItR64zdmyP30/MDTopyq0zjmbHA2qhgTJjznTGn0El8Wgj3w/Gl3dhxObK6gcW+DAoMoYGdCBEJxbFVNcHyp08ZaChZVjI1AzLILqhm/CcI9uFqehwxiTUQKpBiakiDS6qPSVuzW4uWRQBtUPFXrGMDtPAGRe+vAlPfTdrWviOF720F9EyEKwisukyuuN3AzYG/CFPvKnLZBsGSs7Y6PrKX13GhCPx0O/uFuISMaGr6Uvf9QMlgAs0mP9Ufl7Fn6IPn2naSxV9VNFDjsEHTc8jC4se4vMq/hS9XMeLpyafHCVPjdTkNk6o8AYYnEtY+vCufcXc48FAWXpO9Db5Ejmja/moKL7g6+X8CkQ7LzjpmGhXY754VhK5F9cs8JgbC5YHvF36y1C5sd3kXmIiYzZy5vA1PiFJYnN2fQcTiFvHbBqwZOKxYsQEE2fVvPBWmsPIDoD9cI8IVDs+lU05mSKfYQjNI9EpciL+pK9YoLz0A8d3nZBNJuw64gobzXzg5jd2FABNlK/hpnPb85SD29vbYTiaLd3F7C50rm+da2c4ZocDZWxHMNiAT+bWD64FCLxjq0ixr/wbfhuHKd8AKeHGoRPdQ7unMJCJOXwdzZRxwGbMGzNPeefA+MCXsTL77Wc3Ep085dR2XWXCwmiofG3Ded4aKN/N+XVLbwoaH0wiGIop46T33Ilktyu4zpnPIzhzHtjQ75ZNhyCezOUiIcYbw0TOHHeufPrT0o+eTwJ7zkLFnygBm7AAQJLFJ6BjKPu8m8ETcSqAyiuXI4d3Ui6j5fgO6Ak3j5i8Zii4wFw2Z4BjkdA/ob6pHF4MUlz1BUSWBTUTaTi/VhmF2trAFhtahlIsXPsOHj8vKGK8v/jjovjYqeQAKi74AFz+F4yNpZWIJGgoCxhSQFBOuIVMhsoqvrFyJz/v42vLYhvGCjby5wuXreLTMZhx6BazIlLTYooJuZ2D+I0VD7hyPPgeCOQHgmQOtxyKrXISKjY6HhzQofq5Avc/lORaRkmPm3hUOVaFIzfxqAnFbwZF1IpmoAgeC0MBrVEeRLfim9rINdzEtYzutET3bKg281/DHEATFgLG5dDlG84jha0WnNYl/hQp6S3nDGAjJcJckBJmvkzmP9R2TDnUUt7R9vJe/9xFnT6p6nTs4MjzOQXqJxuNGj1xVmxctAN5gdGlwBxxz66gqSVVxPnWzOxUNLSJEi8fkxIXk0nIIqEU8SOi9TpEdot82hAhYmCTWJqqIziIyYuHOjihRDNVcCrhQCeN1CbrqS2fYAQOYGrd/7oMJtfcmPXAypMYK19WIPLM7oSR0L0WZLQmkKxjP/gnYyfmBnS/kL3fMm8azX48s98rn07BBKfqnpeW1H1V6ba6k3H1SB2apo4NpKvUIiYcGBJnNU01dYosQyNwQKwWsFumSGfYPekGu1EZdslQNTcx40FhNwTHGTrOHU+aqrm94go61HjAZV+FvruM2OUI3GDvrT8SepnMT4Z0miou5OqNJYbphjB/AvGS3uC9Ovfgjhfxr5U1rCKCilNI4JZLdkc5SMhFBy2Zc1tmTgoJH5dNLD/3uCKV6pB+HA/eAngP5sqfldu/H4DoHsKROjSeK3AMh2SIKNIsrGtgLCzDIsqRMo6UZ+L0Z2tOizNVJ/dswSIRe7jdkDy77ANye+FS3dIIBbIYBkdnzZTwTChRMYF/mFJKqLZ7r7gg8qtFAGNwEUrEfDGIMZsz/GAjnw+BxcBt6Hpmw2HGjcNBiV/VSLLESbjzvnEwc8m4nRRukdba/qoqJRhoZRg6tiyVIiRZjDHCmgmeFVKxaqEHZnFRuV8ugxv2Mu1bUnJVqOzBPbC2hulc+VcH48UhqPGcfxn54cHRwf3hIVwDByAwhy2GuMsPETqeHOIzGPvmUMbDPSaTH6nnZNLngVng48E9fBAedYCDjEAGbMrdkzJ2nX9qL/zw+ak985rBa8TJn7Eqkdn89f10oH1YgjTSWwuOSCzDBm3SghazrxfQN5OSUEbKp25UC0KprABO3UKHCFhda3IER7lcfa7EwiGkI2qSDpAKDm7bgmHV3J03C0oxDj3fJg5tx3BUw3Aah6JNkWjBrIH5Mg0dzJeqWsRCusQ83TJ1A+tUpbquq8jalGRb+K4drI00jTUhJc+a9s+8nVeYE3ZyQcK9sFstA8OOLHrsfFwLrp1LrnHdLXqlMtwO3z9XREEJjtZ5oOt9z85e56NkEJrRT/nvP/+tXIn/k1QDTKxNsmGHvix3dTDSRLUQgdOjWzqOUeOIu7MWL01i7tMSkDfjMdIN511yfM4TVzDW5jvTunN9IjSpWKAdVyyqIcFF7J3IuOACVOpmUCRl1bcvVYnkCE9L6fqqw8NUe146wchl621OesccCl1v8B19L5eOuH5wR3Fro9NqcsyZMi9G11BRVqoU6Ds14U7SskIx1MA5lEh9npBzXvFdKSdJ/5Ok1wk4fUfxEZGDntBkrBNNHsWT+ckrMD9csJEzAao38vldYHuha0dlVl/HrL6pMlqqQxd25zToD6a3YzrSqkyn/ZleBcZTCYkHcMs24UcnzDx90ipcMVWFNI0YyKDYshA4j5oET8sykUoMA6uWhqhmbIOlWr61VEDq6CCe1rn1pxuCrpKTd3q+Y3Vb7+LZu2JiFrbxFVPc/0KkvQuHTPD7EdIwBqElFkk8OOA5JQgRpGMTnDyDPEZccNpC+QpeiYzqEQ8Euvsnp3X+yW41bn2MjWNKt0wsJq7LUcXv66BQpfD59/80a9klm/L29Z7MaUXNgmYtC+VoCVmDD0vLmtWoCol3dRDaWYvKhsoBNHVGTpaOdHmN540XsSBkYqVcdTnfNWMLvo7ywhNeC18mW15zVycFIqSukwGRWqsibiJZdbIgFhKmTITe/PpCiW27xAnEox2LbJleSj1rjILb1WWDUS5mSBpd17/9lk3AHgrCtuVCr/yojL94xiSf/ZRcy5LPB9GaRGUbZ7WUrtweTrsnLRvSkilmwlNv46O0TT0WaXPl+y7LJfvtspBnAryr1Q1t/QQi1yGoRiPAydXYhYUKVUp85biTEBTCYZ5yvwyUiwCOIocFS2/ax4tL7Lvw5TIhLHp0cXsrGS17d8VLPxYblC1kJWrxjz6K45bnRDd/osDwixqGB204XfEwPmweV/As9v1y+Su6f35ERxezo1kT5bZYUmLw+FF+nH+u8MJAVq+LDt+/j+2c7PFm8mPz2J8rdWNtqv01lRJFafBwXW3wff8bri82vocnLuvNohM2NqzE2GFto1C4WDRVLbqkgNtXLdbUJmKdKlUzVP1Jihabve/zPGJm8Inr4fP3Xzr5479s5493RMjqAljUFSN37Y/nZJjNYUp8k9636Ya1Sp9OkLeWo4V46qLKv1878e/Xdvyr8TT/YN82tekzu8K9M3tsByFAtJu6xK3Xq+ev7AfORS1tic4t6s9RDNz1tkod0kKJeoer4dcHgHu+Gn5DebocL16VlTjHukcPGA1dRozmDiLGN/PF0g3Fjsnz4LefJ1GflckXbeLEsEeAGG4VNTzV4p5iouOhl++sj/aKZHXm9jSjxKnjjl99+/qr11+/EpSdOHC3mL2GdaXbxCQjjeoUawZBdGQx9Wpsk7E+NsjfXgVsFvFNtoTSxWq4iEGUC8OpPbqeBj6XpIqKZHP2xJ5oQes4WEW1XVDSpbIJvFfY2IX/7a1m7b6PnvsfqjWWhAwHErsPIPTUdVFo0ehhus6q1AzWL+pc7kT9VofoVBBRj60F/9hejdDQ0JBOqWXqGlZV1ZQLbShEDKqqQ2hgYVM39f6LGFusugHJK9EepoWrpC+09qI83h/KcznCyKKaoROkI80kmqQ9IIKlYaxCoKaBtd4p7TfA1dnry3d7gFV509aIWPmO/6+4VVyylpU/jg44Uh3yEojQmO4wtc1Stk4q0zKRgYdyjbaAgAdeCpgKV4WwEoZ6UhXvG1U1eJwHomqHDTngxsktKfdyV0zcwve53Bd3qPB5Gqph6QTrhkVNS2xM5btV6pckVdzky8UyQM1Ocs0OlvjKHSDOjveubLs5paoCwbkUfpCH3W0P6bpZLui7NulJtjuK3XAQZ0PcrWlYs0zVxMluOArmE/HIHCJ+ZD7A6qK+m+Eado017GsVW9KCc6murfagNY92J0fLVJ0ODYSJ1U+9cW/1xh+heu8qv3DRvw59sYs69FNtYt6HbEObtOwaHtZuHyoyJA20Ss1rNhFNlh2TuvyCfrncLQpt/K7tdwh1qbbltg3GURtpufw0J0gQYef/zMfZL7RzwRKrrPJbstaIy8x2O246E1c8nsC0yP0nj8hn9sjbznILXdosptw/IdlUIOphS9Zd309e2hiUbqWa9q7iPpVqejN9T7aZhxv8vXLNo6+T9xjv4JBW5Qg3vn2ggBDY0C1TUzXNIvzluLJ6dYSHCBlUp1TXDKqaBn3UsKNOXtq8wqDC3w3hepm/fWP0p3Iwn2yvej37XrHAubEj56ZmOU7yFpC6N4R8s/SuNxj+za8JiQd5OF4iHGO7+Oy96gq15sc2JpWjZpk0BwIl68K1RQ/butjKnvb0v5oWVuQXz8mg5AGW0GXwa8SGGLcuoqkGMVXdJJbOEzwocfH5c5gq31WmwbNoaL/teJ2HH3OlRP8kVkz50QHJz0b+ho1TZWdv5DdsnXpCaeQTaxJFpOKcMIpvO/Eb+SuadGSZJn95PUq2qXJjTw0dER2mqYIbgJ9Q4Krp5PPrgC3vB8nKoG51E3nxFim3p7PWvWq3rV/qW6VzzJACtRPV7kbz/ED7Qfld7W/qT13+vvykAB2/Ov4r242YeM1v/H1QpWsEFw2KI2yLVA+YeVj7npac2ksQ0g2ai131tIhoQFSbf59ynk+baYsLtI3XzbWn65oFHlvTdWdL8tvQlReX1ewN1cQkKVkNM0dV2o2qZGuJJR+6xJIhIRTlXv9t1Ais1o20tEDaH6Br4EyWU9vtSGD64AR+cOEFEmOaya6lkcQvUXN4AAcdpVcrkDj5IZSO9NUegL479O9a0hdRPSfDNKEvxgUR7kZevUDeg1iEFyySInzYnsb6pmUte48S3K5ZNJeUxXoCE5ZJUwHG1OhGY6NA40tnNIuUG+hysvztX8xrT2HjSR2xtRQUv/wVMkC97EfGxK9ZwY2kK1ZdfSyXQCJEK/lvPIQ4Okl+U4hyulHarKH0G8/rQmjzIyI0/1EBK//DF3gtoY2OsGwVKR2xpdgB357G1kdEY27kLJw4wyDRaUwOMWFm+bBW7w83hGKvOgDr4/muuZwEmCBqZg+fvlUJD6lO8ra/+adsOv1mzes9J4oxxEjLeUMoJQnfc5uKRIufm+n6goFXcRLvdSX1NmrOu5VfJzDai7fwbSWY/H1flpb7I9KiWyCZ1Ez/4lQNJkOQYEpUQ7MsqiGSvC5kb9420CI7oRZwOf0Rog7ZCXX/gLkEt3So6kamWqqe/FQWeMh5tK0D22f5n1nk35PfU/3if1BLBwh1vLlv/xAAAIF1AABQSwECFAAUAAgACADyCW0/mK6FCxlzAABSdQAAMwAAAAAAAAAAAAAAAAAAAAAANzliNmEzODNjNTQ2NDI1NzMxNGM5ZTBiZGEzZDZkNzNcRHJlaHRpc2NoMzQ0cHgucG5nUEsBAhQAFAAIAAgA8gltP3W8uW//EAAAgXUAAAwAAAAAAAAAAAAAAAAAenMAAGdlb2dlYnJhLnhtbFBLBQYAAAAAAgACAJsAAACzhAAAAAA=" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />
| + | |
| | | |
| ==Inertialsysteme und Impulserhaltung== | | ==Inertialsysteme und Impulserhaltung== |
Zeile 81: |
Zeile 124: |
| | | |
| ===Freier Fall=== | | ===Freier Fall=== |
− | Fällt der berühmte Apfel vom Baum, so erhält er Impuls. Nimmt man die Erde als Bezugssystem, so ändert sich der Impuls der Erde während des Apfelfalls nicht. Denn das Bezugssystem, also die Erde, ist definitionsgemäß in Ruhe. Somit gilt die Impulserhaltung also nicht. | + | Fällt der berühmte Apfel vom Baum, dann deshalb, weil die Erde und der Apfel über das Gravitationsfeld wechselwirken. |
| + | |
| + | Nimmt man die Erde als Bezugssystem, so nimmt der Impuls des Apfes während des Falls ständig zu, während die Erde überhaupt keinen Impuls hat. Denn das Bezugssystem, also die Erde, ist definitionsgemäß in Ruhe. Somit gilt die Impulserhaltung also nicht. |
| | | |
| Aus Sicht des Apfels erhält die Erde während des Falls eine riesige Menge an Impuls aus dem Nichts und der Impuls ist natürlich nicht erhalten. | | Aus Sicht des Apfels erhält die Erde während des Falls eine riesige Menge an Impuls aus dem Nichts und der Impuls ist natürlich nicht erhalten. |
Zeile 87: |
Zeile 132: |
| Nimmt man aber den gemeinsamen Schwerpunkt von Erde und Apfel als Bezugssystem, so beschleunigt die Erde minimal in Richtung Apfel und erhält während des Falls die gleiche Impulsmenge wie der Apfel, nur in der anderen Richtung. Die Impulssumme ist also erhalten! | | Nimmt man aber den gemeinsamen Schwerpunkt von Erde und Apfel als Bezugssystem, so beschleunigt die Erde minimal in Richtung Apfel und erhält während des Falls die gleiche Impulsmenge wie der Apfel, nur in der anderen Richtung. Die Impulssumme ist also erhalten! |
| | | |
− | ===Bahnfahren===
| |
| | | |
| | | |
| BAUSTELLE!! | | BAUSTELLE!! |
| | | |
| + | Wind und Wolken auf der Erde nicht geradlinig! Nord- und Südhalbkugel unterschiedlich. Weil die Erde rotiert, ist sie kein Inertialsystem. Betrachtet man aber die Erde "von Außen" als sich drehende Kugel, kann man die Abweichung der Winde ohne Corioliskraft erklären. Man hat wieder ein Inertialsystem. Durch die Drehung der Erde um die Sonne wird man aber bei genauer Messung wieder Abweichungen finden. Nimmt man die Sonne als Bezugspunkt hat man ein ziemlich gutes Inertialsystem. |
| + | |
| + | 1.Newtonsches Gesetz lautet also: Es gibt ein Inertialsystem. |
| | | |
| | | |
Zeile 99: |
Zeile 146: |
| Trägheitskräfte sind dagegen von gleicher Art wie die Gewichtskraft: Die Übertragung der Kraft geschieht nicht durch einen verformten Gegenstand. Interpretiert man die Gewichtskraft deshalb als Trägheitskraft, so kann man mit der allgemeinen Relativitätstheorie die Gravitation als Krümmung der Raumzeit erklären. | | Trägheitskräfte sind dagegen von gleicher Art wie die Gewichtskraft: Die Übertragung der Kraft geschieht nicht durch einen verformten Gegenstand. Interpretiert man die Gewichtskraft deshalb als Trägheitskraft, so kann man mit der allgemeinen Relativitätstheorie die Gravitation als Krümmung der Raumzeit erklären. |
| | | |
− | Durch die Unterscheidungsmöglichkeit der Trägheitskräfte von anderen Kräften, kann man Bezugssysteme finden, in denen keine Trägheitskräfte wirken. | + | Durch die Unterscheidungsmöglichkeit der Trägheitskräfte von anderen Kräften, (??? Nicht zur Gravitation!!) kann man Bezugssysteme finden, in denen keine Trägheitskräfte wirken. |
| Solche Systeme heißen Intertialsysteme. | | Solche Systeme heißen Intertialsysteme. |
| + | |
| + | ==Fußnoten== |
| + | <references /> |
| | | |
| ==Links== | | ==Links== |
| + | * Lehrfilm: [https://archive.org/details/frames_of_reference Frames of Reference] ([https://en.wikipedia.org/wiki/Frames_of_Reference Wikipedia]) von Richard Leacock produziert für das "Physical Science Study Committee", MIT, 1960 |
| *[http://schulen.eduhi.at/riedgym/physik/9/scheinkraft/inertialsystem.htm "Scheinkräfte" in anderen Bezugssystemen.] (Fachbereich Physik, Bundesgymnasium/Bundesrealgymnasium Ried im Innkreis) | | *[http://schulen.eduhi.at/riedgym/physik/9/scheinkraft/inertialsystem.htm "Scheinkräfte" in anderen Bezugssystemen.] (Fachbereich Physik, Bundesgymnasium/Bundesrealgymnasium Ried im Innkreis) |
| *[http://www.zdf.de/ZDFxt/module/einsteinrela/relativitaet.html ZDF: Einführung in die spezielle und allgemeine Relativitätstheorie Albert Einsteins] | | *[http://www.zdf.de/ZDFxt/module/einsteinrela/relativitaet.html ZDF: Einführung in die spezielle und allgemeine Relativitätstheorie Albert Einsteins] |
| *[http://sciencestage.com/v/7137/einstein-s-general-theory-of-relativity-lecture-3.html Stanford University: Einstein s General Theory of Relativity Lecture 3] | | *[http://sciencestage.com/v/7137/einstein-s-general-theory-of-relativity-lecture-3.html Stanford University: Einstein s General Theory of Relativity Lecture 3] |
| + | *[http://homepage.univie.ac.at/franz.embacher/SRT/Inertialsystem.html Das Kreuz mit den Inertialsystemen] (Franz Embacher, theoretischer Physiker an der Universität Wien) |
| + | |
| + | ===Bezugssysteme mit konstanter Geschwindigkeit=== |
| + | *[http://www.youtube.com/watch?v=Y75kEf8xLxI youtube: frames of reference part 1 ] (The Physical Science Study Comittee) |
| + | **[http://www.youtube.com/watch?v=dAoGpflOmdw&feature=related part 2] (Bis 4:33) |
| + | *[http://www.youtube.com/watch?v=fzV6J1iMwGI bessere Qualität] |
| + | * [http://www.phy.ntnu.edu.tw/ntnujava/index.php?topic=140.0 Applet: Relative Sichtweisen der gleichen Bewegungen auf einem Fluss.] (GFu-Kwun Hwang, Dept. of physics, National Taiwan Normal University) |
| + | |
| + | ===Beschleunigte Bezugssysteme=== |
| + | *[http://www.youtube.com/watch?v=dAoGpflOmdw&feature=related youtube: frames of reference part 2] (The Physical Science Study Comittee) (ab 4:33) |
| + | *[http://www.youtube.com/watch?v=vzH0ioys-qk bessere Qualität] (linear und drehend beschleunigte Systeme) |
| + | ====Drehende Bezugssysteme==== |
| + | *[http://www.youtube.com/watch?v=3ug23VTMies&feature=related youtube: frames of reference part 3] (The Physical Science Study Comittee) |
| + | **[http://www.youtube.com/watch?v=GzvGfOgf7Y4&NR=1 part 4] |
| | | |
| ===Der Coriolis-Effekt=== | | ===Der Coriolis-Effekt=== |
Zeile 118: |
Zeile 183: |
| | | |
| ===Kunstflug=== | | ===Kunstflug=== |
− | *[http://www.youtube.com/watch?v=1ieBkJRAMsU Video eines Kunstfluges mit Stephan Raab] (youtube: "xtreme aerobatics with Stefan Raab" von "787dreamlinerBoeing") | + | *[https://www.youtube.com/watch?v=8XOX2R2Rl30 Video eines Kunstfluges mit Stephan Raab] (youtube: "Stefan quält sich beim Kunstflug - Raab in Gefahr - TV total" von "MySpassde") |
Ein und dieselbe Situation kann für verschiedene Personen aus ihrem Blickwinkel ganz unterschiedlich beschrieben werden.
Die mathematische Beschreibung eines Bezugssystems besteht deshalb aus einem Ausgangspunkt und vorgegebenen Richtungen im Raum. Meistens ist dies ein kartesisches Koordinatensystem mit drei zueinander rechtwinkligen Achsen. Bei runden Objekten wie der Erde, bieten sich auch runde Koordinatenachsen an. Im Falle der Positionsangabe auf der Erde mit Längen- und Breitengraden.
Wenn also eine Situation so verschieden beschrieben werden kann, dann stellen sich weitere Fragen:
Fährt man in einem Zug mit konstanter Geschwindigkeit, so laufen alle Vorgänge wie im Stillstand ab. Man kann einen Ball werfen und fangen oder auf den Tisch legen und im Zug herumlaufen. Auch eine hohe Geschwindigkeit beeinflusst diese Bewegungen nicht, wir spüren lediglich die Erschütterungen des Wagens durch Unebenheiten der Schiene oder der Räder. Die Erschütterungen werden aber von Veränderungen der Geschwindigkeit hervorgerufen, bei einer ideal glatten Schiene könnten wir keine Veränderung zum Stillstand wahrnehmen.
Auch bei einer Fahrt mit dem Aufzug macht man diese Beobachtung. Nach kurzer Zeit hat der Aufzug auf eine konstante Geschwindigkeit beschleunigt. Nun fühlt sich das eigene Körpergewicht wieder "normal" an, ebenso laufen alle anderen Vorgänge exakt wie im Stillstand ab.
Durch die Rotation der Erde und der Bewegung der Erde um die Sonne bewegen wir uns, auch wenn wir einfach nur Sitzen, im Bezugssystem der Sonne mit einer sehr großen Geschwindigkeit. Weil sich die Geschwindigkeit aber nur langsam verändert[1], spüren wir davon nichts.
Beim Losfahren im Bahnhof beschleunigt der Zug und wir spüren wie wir nach hinten in den Sitz gedrückt werden. Der Sitz fängt uns aber auf und drückt uns nach vorne, sodass wir auf unserem Platz bleiben. Dabei wird sich der Sitz leicht verformen. Aus unserer Sicht hat sich unser Impuls beim Losfahren nicht verändert, er beträgt nach wie vor Null.[2]
Vom Bahnsteig aus betrachtet, sieht man, wie der Sitz uns nach vorne schiebt, weswegen unser Impuls auch zunimmt. Man kann auch beobachten, wie der Sitz verformt wird, eine Kraft, die uns in den Sitz drückt, können wir dagegen nicht beobachten.
Bremst der Zug vor dem nächsten Halt ab, so spüren wir, wie wir nach vorne gedrückt werden. Sind wir mit dem Sitz gut verbunden oder halten uns am Sitz des Vordermanns fest, so wird der Sitz uns nach hinten drücken und uns so wieder am Platz halten. Dabei hat sich unser Impuls wieder nicht verändert, wir und der Sitz wurden nur einmal kurz zusammengedrückt.
Vom Bahnsteig aus nimmt man wahr, wie unser Impuls sinkt, durch die Kraft, mit dem der Sitz entgegen der Fahrtrichtung auf uns drückt. Auch die Verformung des Sitzes sieht man. Die Kraft, mit der wir vom Sitz gezogen werden, kann man nicht beobachten.
Bei dieser Animation sind die Angriffspunkte der Kraftpfeile die Pfeilspitzen und nicht, wie sonst üblich, die stumpfe Seite:
Ein weiteres Beispiel ist das Abbremsen beim Fahrradfahren: Aus der eigenen Sicht wird man nach vorne auf den Lenker gedrückt. Der Lenker hält einen aber fest, indem er in die entgegengesetzte Richtung drückt.
Aus Sicht des beschleunigten Systems werden wir beim anfahrenden Zug von der Trägheitskraft in den Sitz gedrückt, beim bremsenden Fahrrad drückt uns die Trägheitskraft auf den Lenker. Die Kraft, mit der uns der Sitz in den Rücken drückt, und die Kraft, mit welcher der Lenker gegen uns drückt, nehmen wir aber sowohl im beschleunigten System als auch im ruhenden System war!
Im beschleunigten System, bei dem die Geschwindigkeit sich in Größe oder Richtung verändert, wirkt eine "Trägheitskraft" entgegen der Beschleunigungsrichtung. Diese Trägheitskräfte wirken, wie die Gravitation, am gesamten massebehafteten Gegenstand. Im "ruhenden" Bezugssystem gibt es diese Trägheitskraft nicht, hier kann man nur die beschleunigende Kraft feststellen. Aus Sicht des nichtbeschleunigten Systems wirken Kräfte, welche die Beschleunigung verursachen: Das Auto schiebt uns nach vorne, der Gurt bremst uns.
Hier lautet die klassische Frage: Was ist der Unterschied zwischen Zentrifugal- und Zentripetalkraft? Oder: Gibt es die Zentrifugalkraft überhaupt oder ist sie eine "Scheinkraft"?
Die Antwort ist: Es gibt die Zentrifugalkraft, aber nur, wenn man sich auf den sich drehenden Gegenstand setzt und möchte, dass weiterhin das Newtonsche Trägheitsgesetz gilt.
Drehbewegungen kann man von Innen beobachten, wie jemand, der mit dem Auto (Zug, Fahrrad) eine Kurve fährt oder aber, vom Bürgersteig aus, von Außen.
Aus Sicht der FahrerIn wird sie in der Kurve von der Zentrifugalkraft nach Außen gedrückt und der Sitz oder die Tür des Autos drückt in die entgegengesetzte Richtung. Die Person ändert ihren Impuls während der Kurvenfahrt nicht. Sie wird nur zusammengedrückt.
Die Person auf dem Bürgersteig sieht, wie das Auto gegen die FahrerIn drückt und diese Zentripetalkraft sie somit auf einer Kreisbahn hält. Dabei ändert sich der Impuls der Person ständig.
Die Zentripetalkraft kann man also immer beobachten, die Zentrifugalkraft nur im sich drehenden System! (Niemand hat das besser gezeigt als Stanley Kubrik in "2001 Odysse im Weltraum".)
Das sieht man auch bei dieser Animation: Ein Mann sitzt an einem sich drehenden Tisch und hält einen Ball fest.
Auch die Kraftwirkung auf ein sich drehendes Rotorblatt einer Windenergieanlage kann man von Außen oder aus der Sicht des Rotorblattes betrachten. Das ist in der Animation Windenergieanlage dargestellt.
Bei den Überlegungen zur Zentrifugalkraft war der betrachtete Gegenstand gegenüber der Drehbewegung in Ruhe. (Zum Beispiel die AutofahrerIn.) Komplizierter wird es, wenn sich auf einem sich drehenden Gegenstand etwas bewegt.
Diese Animation eines sich drehenden Tisches zeigt die Problematik. Aus der Sicht der mitbewegten BeobachterIn rollt ein Ball ohne sichtbare Einwirkung nicht mehr geradeaus! Damit das Trägheitsgesetz, nach dem ja ohne Krafteinwirkung der Impuls in Stärke und Richtung unverändert bleibt, noch gilt, muß man annehmen, dass eine Kraft diese Änderung hervorruft. Diese Kraft setzt sich aus der Zentrifugalkraft und der sogenannten Corioliskraft zusammen. Beide Kräfte beobachtet man nur im sich drehenden Bezzugssystem.
Gibt es eine Wechselwirkung zwischen zwei Gegenständen, so verändern sich die Impulse der Körper: Zum Beispiel wird einer schneller und erhält Impuls, der andere langsamer und verliert Impuls. Als Mittler zwischen den Körpern kann es eine direkte materielle Verbindung, wie eine Stange oder ein Seil oder aber ein Feld geben.
Das dritte Newtonsche Gesetz sagt nun, dass die Summe der Impulse immer gleich bleibt. Wie sieht das in verschiedenen Beispielen aus?
Fällt der berühmte Apfel vom Baum, dann deshalb, weil die Erde und der Apfel über das Gravitationsfeld wechselwirken.
Nimmt man die Erde als Bezugssystem, so nimmt der Impuls des Apfes während des Falls ständig zu, während die Erde überhaupt keinen Impuls hat. Denn das Bezugssystem, also die Erde, ist definitionsgemäß in Ruhe. Somit gilt die Impulserhaltung also nicht.
Aus Sicht des Apfels erhält die Erde während des Falls eine riesige Menge an Impuls aus dem Nichts und der Impuls ist natürlich nicht erhalten.
Nimmt man aber den gemeinsamen Schwerpunkt von Erde und Apfel als Bezugssystem, so beschleunigt die Erde minimal in Richtung Apfel und erhält während des Falls die gleiche Impulsmenge wie der Apfel, nur in der anderen Richtung. Die Impulssumme ist also erhalten!
Wind und Wolken auf der Erde nicht geradlinig! Nord- und Südhalbkugel unterschiedlich. Weil die Erde rotiert, ist sie kein Inertialsystem. Betrachtet man aber die Erde "von Außen" als sich drehende Kugel, kann man die Abweichung der Winde ohne Corioliskraft erklären. Man hat wieder ein Inertialsystem. Durch die Drehung der Erde um die Sonne wird man aber bei genauer Messung wieder Abweichungen finden. Nimmt man die Sonne als Bezugspunkt hat man ein ziemlich gutes Inertialsystem.
1.Newtonsches Gesetz lautet also: Es gibt ein Inertialsystem.
Durch die Unterscheidungsmöglichkeit der Trägheitskräfte von anderen Kräften, (??? Nicht zur Gravitation!!) kann man Bezugssysteme finden, in denen keine Trägheitskräfte wirken.
Solche Systeme heißen Intertialsysteme.