Wechsel des Bezugssystems (Inertialsysteme)
Inhaltsverzeichnis
Beispiele
Bezugssysteme mit konstanter Geschwindigkeit
- youtube: frames of reference part 1 (The Physical Science Study Comittee)
- part 2 (Bis 4:33)
- bessere Qualität
- Relative Sichtweisen der gleichen Bewegungen auf einem Fluss.
Beschleunigte Bezugssysteme
- youtube: frames of reference part 2 (The Physical Science Study Comittee) (ab 4:33)
- bessere Qualität (linear und drehend beschleunigte Systeme)
Drehende Bezugssysteme
- youtube: frames of reference part 3 (The Physical Science Study Comittee)
Bezugssysteme mit konstanter Relativgeschwindigkeit
In zwei Bezugssystemen, die sich zueinander mit einer konstanten Geschwindigkeit (in Größe und Richtung) bewegen, treten die gleichen Kräfte auf. Je nach Bezugssystem unterscheiden sich nur die Beschreibung der Orte und Geschwindigkeiten.
Als Beispiel kann man sich einen durch einen Bahnhof rollenden Zug vorstellen oder einen Aufzug, der mit gleichbleibender Geschwindigkeit fährt.
Zueinander linear beschleunigte Bezugssysteme
Beschreibt man einen Vorgang in zwei zueinander beschleunigten Systemen, so unterscheidet sich die Beschreibung der wirkenden Kräfte!
Im beschleunigten System, bei dem die Geschwindigkeit sich in Größe oder Richtung verändern kann, wirkt eine "Trägheitskraft" entgegen der Beschleunigungsrichtung. Im "ruhenden" Bezugssystem gibt es diese Trägheitskraft nicht, hier kann man eine beschleunigende Kraft feststellen. Aus Sicht des nichtbeschleunigten Systems wirken Kräfte, welche die Beschleunigung verursachen: Das Auto schiebt uns nach vorne, der Gurt bremst uns.
Beispiele sind ein anfahrender Zug oder ein bremsender Radfahrer. Aus Sicht des beschleunigten Systems werden wir beim anfahrenden Zug von der Trägheitskraft in den Sitz gedrückt, beim bremsenden Fahrrad drückt uns die Trägheitskraft auf den Lenker. Die Kraft mit der uns der Sitz in den Rücken drückt und die Kraft mit welcher der Lenker gegen uns drückt, nehmen wir aber sowohl im beschleunigten System als auch im ruhenden System war!
Bei dieser Animation sind die Angriffspunkte der Kraftpfeile die Pfeilspitzen und nicht, wie sonst üblich, die stumpfe Seite:
Zueinander drehende Bezugssysteme
Zentrifugalkraft
Hier lautet die klassische Frage: Was ist der Unterschied zwischen Zentrifugal- und Zentripetalkraft? Oder: Gibt es die Zentrifugalkraft überhaupt oder ist sie eine "Scheinkraft"? Die Antwort ist: Es gibt die Zentrifugalkraft, aber nur, wenn man sich auf den sich drehenden Gegenstand setzt und möchte, dass weiterhin das Newtonsche Trägheitsgesetz gilt.
Drehbewegungen kann man von Innen beobachten, wie jemand, der mit dem Auto (Zug, Fahrrad) eine Kurve fährt oder aber, vom Bürgersteig aus, von Außen.
Aus Sicht der FahrerIn wird sie in der Kurve von der Zentrifugalkraft nach Außen gedrückt und der Sitz oder die Tür des Autos drückt in die entgegengesetzte Richtung. Die Person ändert ihren Impuls während der Kurvenfahrt nicht. Sie wird nur zusammengedrückt.
Die Person auf dem Bürgersteig sieht, wie das Auto gegen die FahrerIn drückt und diese Zentripetalkraft sie somit auf einer Kreisbahn hält. Dabei ändert sich der Impuls der Person ständig.
Die Zentripetalkraft kann man also immer beobachten, die Zentrifugalkraft nur im sich drehenden System!
Das sieht man auch bei dieser Animation: Ein Mann sitzt an einem sich drehenden Tisch und hält einen Ball fest. (Nach dem Film "frames of reference" des "The Physical Science Study Comittee".)
Auch die Kraftwirkung auf ein sich drehendes Rotorblatt einer Windenergieanlage kann man von Außen oder aus der Sicht des Rotorblattes betrachten. Das ist in der Animation Windenergieanlage dargestellt.
Corioliskraft
Bei den Überlegungen zur Zentrifugalkraft war der betrachtete Gegenstand gegenüber der Drehbewegung in Ruhe. (Zum Beispiel die AutofahrerIn.) Komplizierter wird es, wenn sich auf einem sich drehenden Gegenstand etwas bewegt.
Diese Animation eines sich drehenden Tisches zeigt die Problematik. Aus der Sicht der mitbewegten BeobachterIn rollt ein Ball ohne sichtbare Einwirkung nicht mehr geradeaus! Damit das Trägheitsgesetz, nach dem ja ohne Krafteinwirkung der Impuls in Stärke und Richtung unverändert bleibt, noch gilt, muß man annehmen, dass eine Kraft diese Änderung hervorruft. Diese Kraft setzt sich aus der Zentrifugalkraft und der sogenannten Corioliskraft zusammen.
Wie die Zentrifugalkraft kann man sie nur im sich drehenden System beobachten.
Auf dieser Seite sind in der Animation die wirkenden Kräfte zu sehen und man kann den Wurf des Balles beeinflussen.
Inertialsysteme und Impulserhaltung
Gibt es eine Wechselwirkung zwischen zwei Gegenständen, so verändern sich die Impulse der Körper: Zum Beispiel wird einer schneller und erhält Impuls, der andere langsamer und verliert Impuls. Als Mittler zwischen den Körpern kann es eine direkte materielle Verbindung, wie eine Stange oder ein Seil oder aber ein Feld geben.
Das dritte Newtonsche Gesetz sagt nun, dass die Summe der Impulse immer gleich bleibt. Wie sieht das in verschiedenen Beispielen aus?
Freier Fall
Fällt der berühmte Apfel vom Baum, dann deshalb, weil die Erde und der Apfel über das Gravitationsfeld wechselwirken.
Nimmt man die Erde als Bezugssystem, so nimmt der Impuls des Apfes während des Falls ständig zu, während die Erde überhaupt keinen Impuls hat. Denn das Bezugssystem, also die Erde, ist definitionsgemäß in Ruhe. Somit gilt die Impulserhaltung also nicht.
Aus Sicht des Apfels erhält die Erde während des Falls eine riesige Menge an Impuls aus dem Nichts und der Impuls ist natürlich nicht erhalten.
Nimmt man aber den gemeinsamen Schwerpunkt von Erde und Apfel als Bezugssystem, so beschleunigt die Erde minimal in Richtung Apfel und erhält während des Falls die gleiche Impulsmenge wie der Apfel, nur in der anderen Richtung. Die Impulssumme ist also erhalten!
Bahnfahren
BAUSTELLE!!
kann man die Kraftwirkung an Verformungen erkennen oder Messen. Trägheitskräfte sind dagegen von gleicher Art wie die Gewichtskraft: Die Übertragung der Kraft geschieht nicht durch einen verformten Gegenstand. Interpretiert man die Gewichtskraft deshalb als Trägheitskraft, so kann man mit der allgemeinen Relativitätstheorie die Gravitation als Krümmung der Raumzeit erklären.
Durch die Unterscheidungsmöglichkeit der Trägheitskräfte von anderen Kräften, kann man Bezugssysteme finden, in denen keine Trägheitskräfte wirken. Solche Systeme heißen Intertialsysteme.
Links
- "Scheinkräfte" in anderen Bezugssystemen. (Fachbereich Physik, Bundesgymnasium/Bundesrealgymnasium Ried im Innkreis)
- ZDF: Einführung in die spezielle und allgemeine Relativitätstheorie Albert Einsteins
- Stanford University: Einstein s General Theory of Relativity Lecture 3
- Das Kreuz mit den Inertialsystemen (Franz Embacher, theoretischer Physiker an der Universität Wien)
Der Coriolis-Effekt
- youtube: The Coriolis Force (Auf einem Karussel)
- youtube: Foucault Pendulum (Houston,Texas)
- youtube: Dartmouth professor discusses Foucault's pendulum
- youtube: Coriolis Effect (Mr Musselman's Online Classroom)
Aufzug fahren
- ZDF: Einsteins spezielle und allgemeine Relativitätstheorie Bei der allgemeinen Relativitätstheorie der Punkt "Äquivalenzprinzip"!
- Verstehen Sie Spass - Der magische Aufzug
Kunstflug
- Video eines Kunstfluges mit Stephan Raab (youtube: "xtreme aerobatics with Stefan Raab" von "787dreamlinerBoeing")