Die Maxwellschen Gleichungen: Unterschied zwischen den Versionen

Aus Schulphysikwiki
Wechseln zu: Navigation, Suche
(Die 3. Maxwellsche Gleichung (Erzeugung von elektrischen Feldern durch Ladung und Polarisation))
(Elektro- und Magnetostatik)
Zeile 8: Zeile 8:
 
Siehe: [[Flächenladungsdichte,_elektrische_Feldkonstante_und_erste_Maxwellsche_Gleichung|Felderzeugende Ladung und Feldstärke]] Weitere Abstraktion:
 
Siehe: [[Flächenladungsdichte,_elektrische_Feldkonstante_und_erste_Maxwellsche_Gleichung|Felderzeugende Ladung und Feldstärke]] Weitere Abstraktion:
 
:<math>{Q \over A}=\epsilon_0 E</math>
 
:<math>{Q \over A}=\epsilon_0 E</math>
: <math>Q = \epsilon_0 E \, A = \epsilon_0 \int E \, dA</math> (bei genauerer Betrachtung)
+
: <math>Q = \epsilon_0 E \, A = \epsilon_0 \int E \cdot dA</math> (bei genauerer Betrachtung)
  
: <math>Q = \epsilon_0 \int E \,dA</math>  
+
: <math>Q = \epsilon_0 \int E \cdot dA</math>  
  
 
  Die Summe der elektrischen Feldstärke von allen Punkten einer geschlossenen  
 
  Die Summe der elektrischen Feldstärke von allen Punkten einer geschlossenen  
Zeile 19: Zeile 19:
 
Auch die Enden der Polarisation sind Quellen und Senken des elektrischen Feldes.
 
Auch die Enden der Polarisation sind Quellen und Senken des elektrischen Feldes.
 
"Es gehen genausoviele Polarisierungslinien hinein wie elektrische Feldlinien heraus."
 
"Es gehen genausoviele Polarisierungslinien hinein wie elektrische Feldlinien heraus."
: <math>\epsilon_0 \int E \, dA = -\int P \, dA</math>
+
: <math>\epsilon_0 \int E \cdot dA = -\int P \cdot dA</math>
 +
An den Enden des polarisierten Gegenstandes befinden sich Polarisationsladungen, welche die Quellenstärke angeben:
 +
: <math>Q_{pol}=\int P \cdot dA</math>
 +
 
  
 
Zusammen mit den elektrischen Ladungen gibt es also zwei Möglichkeiten Quellen und Senken des elektrischen Feldes zu erzeugen:
 
Zusammen mit den elektrischen Ladungen gibt es also zwei Möglichkeiten Quellen und Senken des elektrischen Feldes zu erzeugen:
: <math>\epsilon_0 \int E \, dA = Q -\int P \, dA</math>
+
: <math>\epsilon_0 \int E \cdot dA = Q -\int P \cdot dA</math>
: <math> \int \epsilon_0 E + P \, dA = Q </math>
+
: <math> \int (\epsilon_0 E + P )\cdot dA = Q </math>
  
 
Es ist üblich die Polarisierung und die elektrische Feldstärke zu einer Größe, der "elektrischen Flusdichte D" zusammenzufassen. Die elektrische Flussdichte entspricht in einfachen Fällen, wie einem Kondensator, der Flächenladungsdichte.
 
Es ist üblich die Polarisierung und die elektrische Feldstärke zu einer Größe, der "elektrischen Flusdichte D" zusammenzufassen. Die elektrische Flussdichte entspricht in einfachen Fällen, wie einem Kondensator, der Flächenladungsdichte.
 
:<math>\vec{D} = \varepsilon_0 \vec{E} + \vec{P}</math>
 
:<math>\vec{D} = \varepsilon_0 \vec{E} + \vec{P}</math>
  
: <math> \int D \, dA = Q </math>
+
: <math> \int D \cdot dA = Q </math>
  
 
===Die 4. Maxwellsche Gleichung (Erzeugung von magnetischen Feldern durch Magnetisierung)===
 
===Die 4. Maxwellsche Gleichung (Erzeugung von magnetischen Feldern durch Magnetisierung)===
 
vergrößern
 
vergrößern
  
Versucht man eine Analogie zur 3. Maxwellschen Gleichung im magnetischen Feld zu finden, empfiehlt es sich anstatt der magn. Feldstärke H, die der elektr. Feldstärke entspräche, den magnetischen Durchfluss B zu nehmen, da ansonsten das Ergebnis davon abhinge, ob die betrachtete Fläche innerhalb oder außerhalb des Magneten endet.
 
  
Da aber der magnetische Durchfluss stets geschlossene Kreise bildet, fließt aus jeder beliebig gewählten Fläche stetzt genau gleich viel magn. Fluss, wie hineinfließt.
+
Die Enden der Magnetisierung sind Quellen und Senken des magnetischen Feldes.
Daraus ergibt sich:
+
"Es gehen genausoviele Magnetisierungslinien hinein wie magnetische Feldlinien heraus."
 +
: <math>\mu_0 \int E \cdot dA = -\mu_0\, \int M \cdot dA</math>
 +
Die Quellenstärke wird also durch die Stärke der Pole gegeben. Diese Polstärke kann man auch als "magnetische Ladung" bezeichnen:
 +
: <math>Q_{mag}=\int M \cdot dA</math>
 +
 
 +
Im Gegensatz zum elektrischen Feld gibt es keine magnetischen Monopole, deswegen kann man magnetische Felder nur durch Magnetisierung erzeugen:
 +
: <math>\mu_0 \int H \cdot dA = -\mu_0\,\int M \cdot dA</math>
 +
:  <math> \int \mu_0 (H+M) \cdot dA = 0</math>
 +
 
 +
Es ist üblich die Magnetisierung und die magnetische Feldstärke zu einer Größe, der "magnetischen Flussdichte B" zusammenzufassen. Die magnetische Flussdichte ist die entscheidende Größe für die Lorentzkraft und die Induktion.
 +
:<math>\vec{B} = \mu_0 (\vec H + \vec M)</math>
  
: <math>\int B \cdot dA = 0</math>
+
: <math> \int B \cdot dA = 0 </math>
  
Die Summe des magnetischen Durchfluss von allen Punkten einer geschlossenen Fläche ist also null.
+
Die Linien der magnetischen Flußdichte bilden daher stets geschlossene Kreise.
  
 
==Elektromagnetismus==
 
==Elektromagnetismus==

Version vom 8. August 2015, 12:50 Uhr

James Clerk Maxwell

Der 1831 in Edinburgh geborene James Maxwell war, bis zu seinem Tod 1879, einer der bedeutensten Physiker des 20.ten Jahrhunderts. Zu seinen wichtigsten Entdeckungen zählen die Geschwindigkeitsverteilung von Gasmolekülen (Maxwellverteilung), die Vereinigung elektrischer und magnetischer Phenomene zum Elektromagnetismus (Maxwellsche Gleichungen), sowie Theorien über die (elektromagnetische)-Wellenartigkeit des Lichts.

Elektro- und Magnetostatik

Die 3. Maxwellsche Gleichung (Erzeugung von elektrischen Feldern durch Ladung und Polarisation)

vergrößern

Siehe: Felderzeugende Ladung und Feldstärke Weitere Abstraktion:

[math]{Q \over A}=\epsilon_0 E[/math]
[math]Q = \epsilon_0 E \, A = \epsilon_0 \int E \cdot dA[/math] (bei genauerer Betrachtung)
[math]Q = \epsilon_0 \int E \cdot dA[/math]
Die Summe der elektrischen Feldstärke von allen Punkten einer geschlossenen 
Fläche entspricht der elektrischen Ladung innerhalb dieser Fläche.

Material im elektrischen Feld:

Auch die Enden der Polarisation sind Quellen und Senken des elektrischen Feldes. "Es gehen genausoviele Polarisierungslinien hinein wie elektrische Feldlinien heraus."

[math]\epsilon_0 \int E \cdot dA = -\int P \cdot dA[/math]

An den Enden des polarisierten Gegenstandes befinden sich Polarisationsladungen, welche die Quellenstärke angeben:

[math]Q_{pol}=\int P \cdot dA[/math]


Zusammen mit den elektrischen Ladungen gibt es also zwei Möglichkeiten Quellen und Senken des elektrischen Feldes zu erzeugen:

[math]\epsilon_0 \int E \cdot dA = Q -\int P \cdot dA[/math]
[math] \int (\epsilon_0 E + P )\cdot dA = Q [/math]

Es ist üblich die Polarisierung und die elektrische Feldstärke zu einer Größe, der "elektrischen Flusdichte D" zusammenzufassen. Die elektrische Flussdichte entspricht in einfachen Fällen, wie einem Kondensator, der Flächenladungsdichte.

[math]\vec{D} = \varepsilon_0 \vec{E} + \vec{P}[/math]
[math] \int D \cdot dA = Q [/math]

Die 4. Maxwellsche Gleichung (Erzeugung von magnetischen Feldern durch Magnetisierung)

vergrößern


Die Enden der Magnetisierung sind Quellen und Senken des magnetischen Feldes. "Es gehen genausoviele Magnetisierungslinien hinein wie magnetische Feldlinien heraus."

[math]\mu_0 \int E \cdot dA = -\mu_0\, \int M \cdot dA[/math]

Die Quellenstärke wird also durch die Stärke der Pole gegeben. Diese Polstärke kann man auch als "magnetische Ladung" bezeichnen:

[math]Q_{mag}=\int M \cdot dA[/math]

Im Gegensatz zum elektrischen Feld gibt es keine magnetischen Monopole, deswegen kann man magnetische Felder nur durch Magnetisierung erzeugen:

[math]\mu_0 \int H \cdot dA = -\mu_0\,\int M \cdot dA[/math]
[math] \int \mu_0 (H+M) \cdot dA = 0[/math]

Es ist üblich die Magnetisierung und die magnetische Feldstärke zu einer Größe, der "magnetischen Flussdichte B" zusammenzufassen. Die magnetische Flussdichte ist die entscheidende Größe für die Lorentzkraft und die Induktion.

[math]\vec{B} = \mu_0 (\vec H + \vec M)[/math]
[math] \int B \cdot dA = 0 [/math]

Die Linien der magnetischen Flußdichte bilden daher stets geschlossene Kreise.

Elektromagnetismus

Die 1. Maxwellsche Gleichung (Erzeugung von magnetischen Wirbelfeldern)

Etwas analoges zu einem elektrischen Wirbelfeld findet man im magnetischen Feld bei den magnetischen Wirbelfeldern. Wie bereits bekannt entstehen diese um elektrische Ströme. (siehe Die magnetische Feldstärke.)

Allgemeiner gefasst:

[math]Hl = I[/math] entspricht [math]\int H \cdot ds = I[/math]

Der Verschiebungsstrom

Gedankenversuch: Laden eines Kondensators
Aufbau
Ein Kondensator wird mit einer Batterie geladen.
Ablauf

Nach dem Ampereschen Gesetz müsste sich überall entlang des Kabels ein magnetisches Wirbelfeld bilden, solange der Kondensator aufgeladen wir und dazu ein Strom fließt. Die Vorstellung, das dieses magnetische Wirbelfeld allerdings genau beim Kondensator aufhört und direkt danach wieder beginnt, wirkt allderings befremdlich.


Aus diesem Grund erweiterte Maxwell das Amperesche Gesetz um den so genannten Verschiebungsstrom: Wir betrachten zunächst die Ladung des Kondensators, indem wir uns eine Fläche um eine der Platten vorstellen: Nach 1. Maxwellschen Gleichung erhalten wir:

[math]Q = \epsilon_0 \int E \cdot dA[/math]

Die leiten wir nach der Zeit ab:

[math]{dQ \over dt} = \epsilon_0 {d \over dt}\int E \cdot dA[/math]

Da die zeitliche Ableitung der Ladung auch als Strom gesehen werden kann:

[math]I_v = \epsilon_0 {d \over dt}\int E \cdot dA[/math]

Diesen Verschiebungsstrom setzen wir nun wieder in das Amperesche Gesetz ein:

vergrößern vergrößern

[math]\int H \cdot ds = I + \epsilon_0 {d \over dt}\int E \cdot dA[/math]
Um ein elektrischen Strom oder um ein sich änderndes elektrisches Feld
entsteht also auch ein magnetisches Wirbelfeld.


Die 2. Maxwellsche Gleichung (Erzeugung von elektrischen Wirbelfeldern / Induktion)

Versuch: Elektrisches Wirbelfeld (Elektrodenlose Ringentladung)

Aufbau

Eine mit Neon gefüllte Glaskugel ist von einer Ringspule umgeben. Man legt eine hochfrequente (ca.10000Hz) Welchselspannung mit etwa 400 V an die Spule und erzeugt so ein sich schnell änderndes torusförmiges magnetisches Wechselfeld.

Beobachtung

Video des Versuchs.

Überlegung für Potentialfelder

Ein geschlossener rosa Kreis entsteht innerhalb der Glaskugel. Dies lässt auf ein elektrisches Feld schließen. Da dies jedoch rund ist, kann es sich nicht um ein Potenzialfeld handeln, sonder nur um ein elektrisches Wirbelfeld.


[math]U_{1,2} = \phi_1 - \phi_2 = \int_{P_1}^{P_2} E \cdot ds[/math]

Bei gleichem Anfangs- und Endpunkt:

[math]\int_{P_1}^{P_1} E \cdot ds = 0\quad \text{also}\quad \oint_{} E \cdot ds = 0[/math]

Im Wirbelfeld

Für ein Wirbelfeld wird dieses geschlossene Integral also nicht null ergeben, sondern eine andere induzierte Spannung: LaTex: \oint_{} E_{ind} \cdot ds = U_{ind}

Mit [math]U_{ind} = -{d \Phi \over dt}[/math]:

[math]\oint_{} E_{ind} \cdot ds = -{d \Phi \over dt}[/math]

Da [math]\Phi = A \cdot B \quad \text{genauer}\quad \Phi = \int B \cdot dA[/math]:


[math]\oint_{} E_{ind} \cdot ds = -{d \over dt}\int B \cdot dA[/math]

Um ein sich änderndes Magnetfeld entsteht also ein elektrisches Wirbelfeld.

Links